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Preface 

 
Bio-statistical aspect of Population Health book is important from the perspective of development of newer estimation 
procedures & analytical techniques that are able to address complex problems public health phenomenon simplistically. 
The book is an attempt in this direction as it not only suggests new estimation procedures but also demonstrates 
empirically, the estimates that are superior compared to earlier findings, using existing datasets. The multilevel 
estimation procedure used by Prof. K K Das, examined the effects of household and village environmental factors on 
the prevalence of diseases among individuals within and between households in North-Eastern parts of India. The 
indicators such as availability of doctors in the village, the distances of medical facility from the village, source of 
drinking water, separate kitchen facility, toilet facility, cooking fuel, type of house, urban-rural set-up have significant 
impact on disease prevalence and different types of diseases. Dr. Ajay Pandey through his analysis demonstrated the 
significant gain in neonatal survival among pregnant mothers who adhere to WHO recommended inter-birth 
birth-interval length of 33 months. The neonatal deaths were also found to be lower in communities that are connected 
to all weather roads compared to those who are not. This has policy implications for demographically poor performing 
Empowered Action Group States, as the infrastructure push is needed in these Sate. In recent times especially since 
2014 there has been increased allocation by the Central Government for infrastructure development and construction of 
all weather roads in these states.  

Dr. Vivek Verma using Rank Set Sampling (RSS) technique demonstrated the superiority of RSS in situations where 
the probability of occurrence of an event is not fixed but a random quantity. He showed that, in the estimation of the 
probability of infant deaths, Bayesian estimators based on ranked set sample not only proved more effective and 
efficient than any other estimator, but also consistent with the NFHS reported value. Dr. Aditi Baruah derived a 
statistical model for the distribution of closed birth interval by considering variation in post-partum amenorrhea (PPA) 
period. Using the model Dr. Aditi demonstrated low risk of conception among Adivasi (Tirbal) female tea gardeners of 
Assam regardless of their parity. It is found that the risk of conception is low in the population surveyed and is 
reasonable compared to other methods. Dr. H. Brojeshwor Singh using the data from rural Manipur estimated the 
average duration of PPA as 6.6 months. PPA is the time interval between the termination of women’s pregnancy and the 
beginning of the first subsequent menstruation. This finding has immense value from the policy perspective for those 
designing family planning strategies, especially the PPIUCD/IUCD.  

Professor M. Nazrul Islam of Bangladesh suggested new estimation procedure of estimating speed of aging in a 
population as a function of demographic components i.e. life expectancy and population fertility rates. He tested his 
estimates with the existing measures of aging velocity using census data of Bangladeshi population for the census years 
1981 and 2001. The findings demonstrate that the method suggested are good alternative and consistent over the 
existing methods. The alternative approach suggests slower aging process than those obtained by the existing measures. 
Dr. Tandrima Chakraborty of NSSO-India using Weighted Epidemic Chain Binomial Model with one introductory case 
for four and five member households demonstrated the superiority of model fit to epidemic dataset in studying the 
pattern of spread of infectious diseases.  

Dr. Ramesh K Vishwakarma using Liver Cirrhosis marker data demonstrated the feasibility of computing concordance 
correlation coefficient (CCC) through an application of prior information using Bayesian approach. The study 
demonstrated that the Bayesian counterpart of CCC estimates applied between serum bilirubin and albumin among liver 
cirrhosis patient’s data and its 95% posterior interval for concordance correlation coefficient were found to be very 
narrow, indicating that the estimates obtained through the suggested method are very precise. Dr. Dharmendra Kumar 
Dubey determined the predictors of low birth weight among adolescent mothers in Assam-India. Predictors of Low 
Birth Weight were found to be low levels of education, being poor, fourth & above birth order and mothers being 
anemic. Prevalence of LBW varied across the districts, with highest reported from Kamrup and Dhubari and lowest 
reported from Sonitpur and Karbi Anglong districts of Assam in India. Dr. Padum Narayan studied the linkages of son 
preference over daughters in childbearing process among married couples in India. The findings from the study shows 
that the parity progression ratios were consistently higher among currently married women who had only daughters at 
all parities as compared to those who had only sons or both sons and daughters in NFHS-3 (2005-06) as well as 
NFHS-4 (2015-16) irrespective of the place of residence. The pace of progressions differs substantially between urban 
and rural areas. Greater parental preference for sons over daughters has been observed in the rural areas as compared to 
urban areas at all parties in 2015-16. The study suggest that the recent initiate of “BETI Bachao, BETI Padhao” which 
literally means educate girl child to save girl child is very timely to eliminate the son preference in the society.  
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Dr. Jagriti Das using Log Normal distribution as an actuarial risk model estimated important actuarial quantities like the 
probability of ultimate ruin, moments of the time to ruin, the surplus prior to ruin and the deficit at the time of ruin 
when the underlying claim severity distribution is Log Normal. Dr. Jaishree Prabha developed imputation methods to 
reduce the impact of non-response sampling error at both the occasions in two-occasion successive (rotation) sampling. 
Dr. Lipi B Mahanta improvised the Generalized System of Curves that is important in describing frequency 
distributions for wide a variety of observed distributions.  

Scholarly work by authors not only demonstrate their innovative thinking but also is sincere gratitude towards an 
inspiring mentor, guide & motivator Professor Dilip C Nath who at the age of 70 keeps transforming our dreams into 
actions. He is currently Professor Emeritus at Royal Global University, Assam and was a Former Vice Chancellor, 
Assam University Silchar, Assam, India. 
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A Probability Model for Closed Birth Interval and Its Application to Adivasi 
Married Females 

 

Abstract 
Birth interval reflects the reproductive behaviour of a population. The study of the birth interval is useful in detecting 
and measuring the current changes in the natality pattern of women. The closed birth interval is a good index of fertility 
as it indicates at what spacing women have children. The fertility of a woman is inversely related to her mean closed 
birth interval. In this chapter, a model for the distribution of closed birth interval has been derived by considering 
variation in post-partum amenorrhoea (PPA). It is assumed that PPA follows a modified Pascal distribution. The risk of 
conception has been estimated by the scoring method. The model has been demonstrated for estimating the risk of 
conception irrespective of parity for Adivasi married female of tea garden areas of Assam. It is observed that model is 
suitable to describe a distribution of the closed birth interval. It is found that the risk of conception is low (0.61) for this 
survey population. The estimate of the parameter λ, the risk of conception obtained through the model is reasonable.  

Keywords: Conception, Foetal wastage, Parity, Postpartum amenorrhea, Pregnancy 

1. Introduction 
Birth interval reflects the reproductive behaviour of a population. The study of the birth interval is useful in detecting 
and measuring the current changes in the natality pattern of women. Birth interval influences the rate of population 
growth. There is an inverse relationship between the birth rate and birth intervals. A population with a higher birth 
interval may grow slowly than the other population. Thus birth intervals are related to population growth. It has also 
a direct impact on the health status of mothers as well as children. The birth interval can also be used to estimate certain 
bio social parameters of fertility such as fecundability, the incidence of foetal wastage, etc. 
Mainly, there are two types of birth intervals-namely closed birth interval and open birth interval. These intervals are 
sensitive indices of fertility. Closed birth interval is the interval between the successive live births of a woman and open 
birth interval is the interval from the date of last live birth to the date of enquiry. Averaged closed birth interval indicates 
the extent of spacing between children. A study of closed birth interval is useful in the analysis of fertility change in the 
sense of change in spacing.  

There are different types of closed birth intervals-- (i) All closed birth interval: In this case, all birth intervals obtained 
from the survey are taken together and analysis is carried out by birth order, age, and marital duration, (ii) Last closed 
birth interval: This is the interval between the last and last but one live birth of each woman. A woman who has given 
birth to at least one child will contribute one interval of this type. (iii) Straddling birth interval: An interval is considered 
to be straddling at a particular age or duration of marriage or at a particular point of time if one birth occurs before that 
age or point and the next birth occurs later, (iv) Interior birth interval: An interval that begins and ends in any segment 
of age group or marriage duration is called an interior birth interval. 

A number of probability models have been developed to study birth interval which is more sensitive index for detecting 
current changes in the fertility pattern of women who are still in reproductive ages. Studies [1-3] had derived probability 
models for closed birth intervals. Some theoretical continuous time models [4-5] for closed birth intervals for any 
specific order with fixed marital duration have also developed. A model [6] was developed for the closed birth interval 
of women with specified marital duration. A parity dependent model [7] was derived for closed birth interval. Pathak 
(1983) proposed A continuous time probability model [8] was proposed for closed birth intervals of women of a 
specified marital duration. A probability distribution for the closed birth interval [9] was derived. A Probability Model 
[10] was derived to describe the variation in the length of any order of closed birth interval of females of large marital 
duration with the assumption that the fecundability for females of migrated and non-migrated couples is different and 
remains constant till the next birth. 

A closed birth interval is the interval between two births i.e. the closed in the sense that the time is closed by two births. 
The closed birth interval can be represented as follows: 
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Marriage         1st birth               2nd birth              i –1th birth               ith birth              i+1th birth 

↑___________↑______________↑_____________↑______________↑____________↑ 

T0� ��      T1� ��                                  Ti� ��  

The symbol Ti denotes the length of closed birth intervals and Ti indicates the interval between the ith and (i+1) th births. 
Thus a woman of parity i can contribute ith closed birth intervals The first closed birth interval T0 is different from the 
remaining closed birth interval as it does not have the period of postpartum amenorrhoea which is an important 
component in other intervals. 

Birth interval between two live births has four main components: (i) The period of post partum amenorrhea following 
the birth of the earlier child (except T0 i.e. from marriage to first birth). (ii) Total waiting times between two live births. 
(iii) The period of pregnancy and post termination amenorrhea (if any) of abortion or stillbirths intervening the live 
births. (iv) Gestation period though variable but generally taken as nine months.  

An analytical model has been developed for the probability distribution of the closed birth interval by considering the 
interval as the sum of these four components assuming known functional forms for each of the component distribution 
and their statistical independence [11]. 

Let Xi (i≥1) be the interval between ith and (i+1) th live birth, consisting of (i) the period of post-partum amenorrhea 
following the ith birth, (ii) waiting time for the conception (i+1) th and (iii) and the gestation period for the (i+1) th live 
birth. 

                 ith birth                                                i+1th birth  

                    ↑___________________↑______________________↑_________↑ 

                     h
� ��            waiting time   

� ����    g
� ��  

 
Let h denotes the duration of non-susceptible period. The duration of non-susceptible period h after each parity is taken 
as constant, but in practice it is observed that the period of gestation of a conception resulting in a birth is almost 
constant. The duration of PPA following the birth varies from female to female, though for the same female the 
variation over parity may be assumed to be negligible. The non-susceptible period is a major determinant of birth 
interval in a population with low levels of contraception. 

Thus in this paper an attempt has been made to develop a model of closed birth interval by considering variation in the 
non-susceptible period for estimating risk of conception for a low contracepting population. The application of this 
model has been illustrated through closed birth interval data of Adivasi (tea garden labourer) married females of Assam. 

2. The Model 
(i) Assumptions 
A probability distribution for describing the variation in the length of the closed birth interval of a woman has been 
derived under the following assumptions. 

(i) Closed birth intervals are considered only after at least one birth has taken place. 

(ii)  Only the non-contracepting women are considered 

(iii)  Foetal wastage, parity, and marital duration are ignored. 

(iv)  Assuming the one-to-one correspondence between a conception and a live birth 

(v)  Let the married women have a constant risk of conception � , 

(vi)  The time interval of the first conception after marriage follows an exponential distribution with density 

function 

f t e t
0( ) �

�� ��           ,      t > 0, > 0  
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(vii)  The duration between ith and (i+1) th conception follows a displaced exponential distribution with 

probability density function 

f t ei
t h( ) ,( )� � �� �         t > h, i = 1,2,3,....   

where λ is a constant, called the conception rate, and is a measure of the expected risk of a conception with which the 
female proceeds for the next conception. And ‘h’ is the period of non-susceptibility including the gestation period and 
the period of post-partum amenorrhea (PPA).  

We have considered only non-contracepting women for assessing the impact of variation of PPA on the closed birth 
interval. 

(ii) Derivation of Model 
The period of post-partum amenorrhea is the basic component of birth intervals. Usually, it is the longest in natural 
fertility. It is the most variable component of the birth interval. It is therefore important to measure precisely the length 
of amenorrhea in a fertility study. Data on amenorrhea have been obtained from the survey when women have been 
asked when they resumed menstruation after the birth of their last child.  

Many models of amenorrhea [12-14] have been developed to adjust the data. A modified Pascal distribution [12], has 
been used most often in reproductive models and later [14] extended the work of Barrett [12].  

A generalization of Barrett’s distribution namely 

A=C+ x1 +x2 + …+ xk , where C and k are positive integers and the xi are identically and independently distributed 
geometric variables with common parameter ‘p’. The resulting modified Pascal distribution is 

,...2,1,0,p p)1(
1-k   

1-kh
  h)a(C kh ����

	



��
�

 �
�� h  

Parameter C, signifying the minimum length of amenorrhea, is typically set at 1 or 2, and h = the period of 
non-susceptibility. 

Now suppose that ‘h’, instead of being regarded as a fixed constant, is also a random variable following the modified 
Pascal distribution. Hence the joint probability density function of closed birth interval X and ‘h’ the PPA is given by 

.xh 0,1,2,...; h    ,p p)1(
1-k 

1-kh
 e   h)(x,f khh)-(x-

1 �������
	



��
�

 �
� ��  

Therefore the marginal function of x is given by: 

�
�

�
0h

1 h)(x, f  f(x)  

f x p e q ek k x( ) ( )� � � �� � �1 , -k<x<�  

The probability density function of the truncated exponential distribution, truncated at both end ‘1’ and ‘T’ is given as 

T)xP(1

f(x) 
 g(x)

��
�  

T.x1   , e )e- e  ( x-1-T- ��� � ����  

  T)P(X  F(T) ��� ). e -(1 )e- e  ( -T1-T- ��� �  

3. Estimation Technique 
It is seen that the proposed model is based on only one parameter, namely, �  ; an effort is made to estimate the 
parameter in the model by the method of maximum likelihood. The procedure to obtain the maximum likelihood 
estimate of �  is described. Let Xi (i=1,2,3,…N) be a random sample of size N from the distribution (1). Let Nr (r = 
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1,2,3…. n) be the observed frequencies, such that 

                                                  N Nr
r

n

�
� �

1

   . 

The likelihood function is given by 

L
N

 N
  P ,

where P g(x)

r
r 1

n r
N

r 1

n

r

r�

�

�

��
�

 

which can be obtained from the corresponding distribution function Fr(T) by successive subtractions. The maximum 
likelihood estimate of �  is obtained by solving the following normal equation,  

�
� �

�
� �

 l o g L

 
     

N

P
 

  P

  
 =  0                                     (2)r

rr 1

n
r�

�
�  

For this, the differentiation of Pr (r≥ 1) with respect to unknown parameters is required. Since the explicit solution of 
equation (2) is not possible, the scoring method can be used to obtain maximum likelihood estimators of the unknown 
parameter. So, the m. l. estimate of the parameter is calculated from the following matrix equation 

I  =  S , where Score (S) =
N

P

 P

 

         and Information (I) =  N
1

P

 P

 

 P

 

r

rr=1

n
r

rr=1

n
r r

��
�
� �

�
� �

�
� �

�

�
 

At first the differentiation of Fr (T)’ s for r=1, 2,…n is obtained and then the corresponding differentiation of the 
probabilities can be obtained by successive subtractions. 

�
��

� � � �

� � � � � � � �

F T
e e Te e

e e e e e Te e

r T T

T T T T

( )
( )( ) ( )

( ) ( ) ( )

� � � �

� � � �

� � � � �

� � � � � � � � �

1 2

1 2                 + Te-

 

�
� �

�
� �

�
� �

 P

 

 

 

 

 
             r = 1,2,3...nr ( ) ( ) ( )T F T F Tr r� ��1  

The pilot value of the unknown parameter, which is required for the scoring method, can be calculated by equating the 
relative frequency of one cell of the observed distribution having a significant number of observations to their 
respective theoretical expression. This equation can be solved by Newton Raphson’s iteration procedure. The pilot value 
obtained by this process is used in the scoring method.  

For this analysis, the relative frequency of the first cell of the observed distribution is equated to the respective 
theoretical expression. The approximate value of the root is obtained and then the real root of the equation or the pilot 
value of the parameter �  is obtained by the Newton-Raphson method. 
4. Application and Discussion 
The data for this analysis has been taken from a survey conducted in 14 tea gardens of Jorhat district of Assam. The 
survey titled “A study on the fertility and reproductive health of tea garden female workers of Assam” was conducted in 
2000 under the financial support of the University Grants Commission, New Delhi. The total number of women 
interviewed in this survey was 1015. Out of these 238 women of reproductive age group (15-49) of marital duration 6 
years were taken for this analysis. Table 1 gives the frequency distribution of closed birth intervals in years for 238 
Adivasi females with a marital duration of 6 years. The maximum likelihood estimate of the parameter is found to be 
0.61.  
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Table 1. Observed and expected distribution of closed birth interval of Adivasi married females 

Birth Intervals 
(in years) 

    Observed    
    frequency 

Expected     
frequency 

1-2 
2-3 
3-4 
4-5 
5-6 

        113 
         64 
         33 
         18 
         10 

       114 
        62 
        33 
        19 
        10 

Total        238       238 

χ2=0.124(calculated) 
χ2 0.05 (3 d.f) =7.815 

� .

� ( � ) .

�

�

�

�

0 61

10 13 783V x
 

The expected frequencies are computed with the help of the estimated value of parameter λ = 0.61. The expected 
frequencies corresponding to observed frequencies, the calculated value of chi square, the estimates of parameter λ and 
the variances of the estimated parameter are shown in the Table 1. To measure the closeness of the expected frequencies 
and the observed frequencies, the usual chi square test has been applied. The calculated value of chi-square is 0.124 for 
3 d.f, which is insignificant. This shows that the proposed model provides an adequate fit to the given data. 

Figure 1 displays both the observed and fitted distribution of closed birth intervals for Adivasi married females for this 
survey population. The estimate of the parameter λ, the risk of conception for an Adivasi married female obtained 
through this model is reasonable in Indian context, but it is lower in comparison to a female of developed countries. It is 
seen that this value which is 0.61, is similar to the value estimated [6] for a married woman in Uttar Pradesh, which was 
0.58. Also, Singh et al [15] reported risk of conception from closed birth interval analysis is 0.78 for the same 
population. However, Singh [16] obtained the estimate of the risk of conception for women in Uttar Pradesh was very 
high (λ = 1.38). 
However, in this model foetal wastage is not considered and hence the model can be extended by taking into incomplete 
conception. From the above analysis it is clear that proposed model is a suitable one to describe a distribution of the 
closed birth intervals for such survey-populations. 
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Inter-birth Interval Length and Neonatal Survival: A Study on 
Demographically Poor Performing EAG States 

 
Abstract 
World Health Organization (WHO) expert group on birth spacing recommended optimal birth spacing between live 
birth and the next pregnancy as 24 months in order to reduce maternal, peri-natal, and infant deaths. This means the 
Birth Interval between two consecutive births should at least be 33 months. Using the National Family Health Survey-II 
(1998-99) dataset the gain in neonatal survival is studied among those who adhered to WHO recommended minimum 
birth interval. The findings suggest substantial gain in neonatal survival among those who adhere to 
WHO-recommended birth spacing. As the NFHS-II dataset provides the opportunity to measure the developmental 
impact on neonatal survival the community connectivity with all-weather roads was studied using Hierarchical Linear 
Models. The odds of neonatal deaths were observed to be lower in communities that are connected by all-weather roads 
compared to those that are farther.  

Keywords: Inter-birth Interval; All-weather Road; Neonatal Deaths. 

1. Introduction 
United Nations Sustainable Development Goals for 2030 aim at reducing neonatal mortality from its level to at least 12 
per 1000 live births [1]. For the year 2015, India’s medium-range estimates on neonatal mortality as estimated by the 
UN Inter-agency Group for Child Mortality Estimation (IGME) is 27.7 deaths per 1000 live births.  This translates into 
695,852 neonatal deaths in 2015 [2]. Globally during 2015 about 2,682,438 neonates die within 28 days of birth. India 
accounts for 26 percent of the global neonatal deaths. This reflects a disproportionately large burden of the global 
neonatal deaths, as approximately one in four neonatal deaths occur in India. Studies have shown that three-quarters of 
these neonatal deaths occur in the first seven days of life or the early neonatal period, which are largely preventable [3]. 
On analyzing the data from the successive rounds of the National Family Health Survey, a slow rate of decline in 
neonatal mortality in recent years is evident as the rate declined from 48 deaths per 1000 live births in 1995 to 27.7 in 
2015 [2]. In order to increase the neonate’s survival outcomes and speed up the rate of decline of neonatal mortality 
rates saw a marked policy shift and the launch of National Rural Health Mission (NRHM) programs in 2005. The State 
received direct grant from the central government to establish across district state of art Sick Neonatal Care Unit’s 
(SNCU) within the District Hospitals. The SNCU units are established to provide medical emergencies to sick neonates 
(both in-born & out-born) within the district. India’s progress in achieving the SDG goals hinges largely on the progress 
made by the eight demographically backward north Indian states, together termed as Empowered Action Group (EAG) 
States. Whether or not India achieves the SDG target of at least 12 neonatal deaths per 1000 live births, by the year 
2030, depends largely on the progress made by these States in reducing neonatal deaths. 

Poor birth spacing is among the leading causes of high levels of neonatal and maternal mortality. Births in India and 
especially in the EAG States are poorly spaced leading to high levels of maternal, infant, and child mortality. Studies 
including those done by USAID recommend 3 to 5 years of birth spacing compared to 2 to 3 years spacing 
recommended by the WHO [4]. In the year 2005, in order to have a uniform recommendation on birth spacing for 
improved survival outcomes of neonates, WHO held a technical consultation and scientific review of Birth Spacing at 
its headquarters in Geneva. The consultation meeting comprised 37 international experts. The expert group 
recommended the optimal birth spacing between live birth and the next pregnancy as 24 months at least, in order to 
reduce maternal, peri-natal, and infant deaths [4]. It is in this backdrop that the inter-birth interval (IBI) length in EAG 
States is studied keeping in view the WHO recommended minimum birth interval length. This chapter therefore 
examines the impact of successive inter-birth interval length on neonatal mortality keeping other socio-economic and 
demographic variables constant using the proportional hazards model. 

2. Review 
Several risk factors that influence the survival chances of neonates have been identified and reported in the literature. 
This includes women’s parity, maternal age, caste, religion, birth weight, size of the baby at birth, frequency of 
antenatal visits, TT injections during pregnancy, stillbirth, and previous birth interval length [5]. There are research 
studies that advocate a birth interval length of 2 years between two consecutive births for better child health [6] while 
others advocate intervals of 3 to 5 years as safe for both the mother and the baby compared to ≤ 2 years of the birth 
interval [7]. Studies have also shown that too short birth intervals (<2 years) are associated with high levels of infant 
and child mortality [8-10]. Using conditional logistic regression Kozuki& Walker [11] analyzed 47 DHS country data 
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and predicted that children that are born at less than 18 months & less than 24 months preceding birth interval have 
a higher risk of neonatal and under-five mortality compared to those who were born with a preceding birth interval 
greater than or equal to 24 to 60 months. Rutstein [12], study using DHS data from 17 developing countries showed the 
increased risk of mortality and under-nutrition for births with birth intervals less than 36 months. The study suggested 
optimal birth interval length to be in-between 36 and 59 months. Using the data from the rural northern Indian State of 
Uttar Pradesh Williams et.al. [13] examined the length of the preceding birth interval and neonatal outcome. The study 
reported higher odds of neonatal deaths for those with birth intervals less than <18 months and 18–35 months, 
compared to births that are spaced at 36–59 months. However, studies have also shown that too-long birth intervals (>5 
years) are associated with an increased risk of pregnancy complications such as preeclampsia as the mother loses 
the protective effect from the previous pregnancy [14]. Exavery et al. [15] using data from rural Tanzania studied the 
factors responsible for adherence to WHO recommended inter-birth interval length. It reported young maternal age, low 
levels of education, multiple births to the index, home delivery of the index child, being an in-migrant, higher parity and 
married as factors that are associated with non-adherence to the WHO recommended minimum inter-birth interval of 33 
months. The impact of adherence to WHO minimum inter-birth interval length on neonatal survival and the impact of 
all-weather road connectivity within the community is studied. 

3. Objectives 
•To estimate the neonatal mortality for each successive inter-birth interval less than 33 months vis-a-vis greater than 
equal to 33 months using life tables 

•To study the hazards ratio using the Cox Proportional Hazards model for each successive inter-birth interval less than 
33 months vis-a-vis greater than equal to 33 months 

•To study the community connectivity by pucca (all-weather) road on neonatal deaths in respect of marriage to first 
inter-birth interval 

4. Data & Methods   
Data collected from the National Family Health Survey (NFHS-2) [16] is used to investigate the risk of neonatal 
survival for the successive inter-birth intervals among those who adhere to WHO recommendations for 24 months and 
those who did not, keeping all other socio-economic & demographic variables constant. The data is analyzed for the 
EAG states comprising Bihar, Madhya Pradesh, Odisha, Rajasthan, and Uttar Pradesh. Life- tables are used to estimate 
the levels of neonatal mortality for birth to pregnancy intervals greater than 24 months or less than equal to 24 months. 
For ease of analysis, we added 9 months of gestation to the recommended 24 months of birth to pregnancy interval 
making inter-birth interval length as 33 months. STATA version 15 was used to carry out the analysis.  

5. Findings 
Table 1 presents the life table estimates of neonatal mortality for each successive inter-birth interval that adhere to 
the WHO recommended 33 months compared to those that do not. The findings suggest strikingly high levels of 
neonatal mortality for inter-birth interval lengths that did not adhere to the recommended minimum inter-birth interval 
length of 33 months.  The difference in neonatal mortality is more pronounced for higher-order inter-birth interval 
lengths. Among marriage to first birth interval length, there is a gain of seven neonates for those who adhere to 
the WHO recommended minimum compared to those who do not. Among first to second inter-birth interval, the gain is 
of 40 neonates among those who adhere to WHO recommended inter-birth interval length of greater than 33 months. 
Those who adhere to the WHO minimum of greater than 33 months of inter-birth interval reported 31 neonatal deaths 
compared to 71 neonatal deaths among those who did not adhere to the WHO-recommended IBI. Similarly, for 
the second to third inter-birth interval, those who adhere to the recommended minimum reported 28 neonatal deaths 
compared to 64 among those who did not, thereby gaining 36 neonatal deaths among those who adhere to the WHO 
recommended minimum. In the third to fourth inter-birth interval, there is a gain of 39 neonatal deaths. Those who 
adhere to greater than 33 months of inter-birth interval reported 30 neonatal deaths per 1000 live births compared to 69 
deaths among those who did not adhere to the recommended greater than 33 months of inter-birth interval length. The 
gain in neonatal mortality for those who adhere to WHO recommended IBI among fourth to fifth inter-birth interval is 
41 neonates. Neonatal mortality in this segment of the inter-birth interval was recorded as 74 for those who did not 
adhere and 33 neonatal deaths for those who adhered to the WHO recommended minimum. Among fifth to sixth 
inter-birth interval length the neonatal mortality for those who adhere to greater than 33 months of birth interval 
reported 32 neonatal deaths compared to 81 deaths for those who do not adhere to WHO recommended IBI. We thus see 
a gain of 49 neonates in this segment of inter-birth interval length for those adhere to WHO recommended birth spacing. 
In the six-plus births segment, we see maximum gain in neonatal survival for those adhering to WHO recommendations. 
Those whose inter-birth interval length was less than equal to 33 months, reported 97 neonatal deaths compared to 39 
deaths for those who did not adhere to the WHO recommended minimum. 
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Table 1 also presents the findings from the multivariate analysis using the Cox Proportional Hazards model. The Hazard 
ratios are presented in the table after consolidating the findings from the seven different sets of multivariate hazard 
models run separately for each successive inter-birth interval length.  The Hazards model was run after testing the 
proportionality assumption among the controlled covariates. For marriage to first birth interval length, the hazard or the 
risk of neonatal deaths is not different among those who adhere to and those who do not adhere to WHO 
recommendations. This difference is also not statistically significant. 

Among the second inter-birth interval, it can be seen that, for those adhering to the inter-birth interval of greater than 33 
months the risk or hazard of neonatal deaths is 45 percent less and is statistically highly significant. Similarly, for the 
third inter-birth interval (between the second and third birth) the risk/hazard of neonatal deaths is 40 percent less for 
those who adhere to WHO recommendations and is statistically significant. Similarly, for the fourth inter-birth interval 
(between the third and fourth birth) among those who space births more than 33 months the risk/hazard of neonatal 
deaths is 38 percent less compared to those whose inter-birth interval length is less than 33 months. This is again highly 
significant. For the fifth inter-birth interval (between fourth and fifth birth) those above WHO recommended have 30 
percent less risk/hazard of neonatal deaths compared to those below WHO recommended, and is again statistically 
significant. Similarly, for the sixth inter-birth interval (between the fifth and sixth birth) those above WHO 
recommended have 39 percent less risk/hazard of neonatal deaths than whose birth interval is below WHO 
recommended and is statistically significant. For births Six and above 37 percent less risk/hazard of neonatal deaths is 
reported among those whose length of inter-birth interval is more than WHO recommended, and is again statistically 
highly significant compared to those whose inter-birth interval length was less than equal to 33 months. These findings 
are strongly suggestive of the implementation of WHO guidelines with regard to the length of inter-birth interval length 
as the probability of neonatal survival is very high among the successive inter-birth interval length. 

Road connectivity in rural areas was taken as one of the development indicators, as it was a big challenge at the time of 
the NFHS-II survey in accessing health care services. NFHS-II had asked questions to rural communities on the village 
distance from the all-weather road in KM. The village data file was merged with the birth file to study the effect of 
community connectivity with all-weather roads and its impact on neonatal survival. Table 2 below provides the 
intra-class correlation (ICC) calculated using the GLIMMIX procedure based on an unconstrained model. The 
unconstrained model does not include any predictor variable and the estimate of random intercept provides the ICC 
value based on the model specification shown by equation 1 below. 

 

 

From the above model 1 which is intercept only model, gives the value of ICC as 

 

 

Equation 2 below provides the value of ICC as 0.4531 or 45 percent of the total variance in neonatal deaths is due to the 
between-community differences. As a next step in the model building covariates at level 1 (individual level) were 
introduced in the model and the intercept was allowed to vary across the community. For the model to converge, the 
covariates at level-1 included in the model were the sex of the child (0=male 1=female), mother literacy (0=illiterate 
1=literate), tetanus toxoid injection during pregnancy (0=no 1=yes) and marriage to first birth interval. The model 
specification is given by equation 3 below 
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In the model-3 the intercepts are allowed to vary across communities but the slope is fixed. The findings presented in 
Table-2 under model-1 show the relative importance of the predictor variable at the individual level (level 1) in 
predicting neonatal deaths. The only covariate at level-1 that predicts neonatal deaths is whether or not the mother got 
TT vaccination during the pregnancy. To study the impact of distance of village connectivity from all-weather roads, a 
level-2 predictor was introduced in the model. It is hypothesized that closer the community to all weather roads better 
the neonatal survival chances. The model specification is given by equation-4 below 

 

In equation 4 the BI considered is marriage to first birth interval. The variable distance is the village distance to 
all-weather roads in kilometers and is a continuous variable. The findings from the equation 4 are presented in the 
table-2 under sub-heading model 2. Here also the intercept is allowed to vary across the communities and the slope is 
fixed. Even after the introduction of the level 2 variable, at level-1 the tetanus injection during pregnancy is the most 
important variable predicting the outcome variable i.e. neonatal deaths. The village distance to all-weather road is 
significant at a 10 percent level of significance and in the communities that are closer to all-weather road, the odds of 
neonatal deaths are 10% less (exp(-0.0968)). This is an important finding and indicates the importance of rural 
connectivity by all-weather roads. Since 2014, the government of India has been investing heavily in various 
infrastructure projects. Building roads at a pace never seen before any time in the past, has led to improved rural 
connectivity. Rural areas are better connected with expressways today, which reduces travel time immensely and has led 
to access to healthcare services rapidly.  Kayode et al. [17] used the multilevel model to identify factors responsible for 
neonatal mortality in Ghana. Findings suggest community-based interventions such as investment in basic education, 
poverty alleviation, women empowerment, and infrastructural development will improve neonatal survival. Rayment et 
al [18] study findings support the idea of community-level policy intervention to increase the presence and continuity of 
community healthcare workers for improved outcomes for women at increased risk of health inequalities. He also 
suggested further research to study the relationship between community-based models of care and neonatal outcomes.  
6. Conclusions 
If India has to achieve the Sustainable Development Goal target set for 2030 of achieving at least 12 neonatal deaths per 
thousand live births, it is imperative that strong policies of educating couples (or families)  to space births as per WHO 
recommendation needs to be evolved. The gain in neonatal deaths among higher-order inter-birth intervals is strikingly 
high among those who adhere to WHO recommendations. Besides the rural connectivity should improve as the odds of 
neonatal deaths is strikingly lower among villages that are closer to all-weather roads compared to those that are further 
away. 
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Table 1. Neonatal Deaths & Hazards Ratio: EAG States 

Inter-birth Interval 
 

Neonatal Deaths  Hazard 
Ratio 

SE Sig. 

First (Marriage to First Birth)     

<=33 months (ref) 81    

>33 months 74 0.978 0.0445 0.626 

Second (First to Second Birth)     

<=33 months (ref) 71    

>33 months 31 0.5562 0.038 0.000 

Third (Second to Third Birth)     

<=33 months (ref) 64    

>33 months 28 0.5935 0.0484 0.000 

Fourth (Third to Fourth Birth)     

<=33 months (ref) 69    

>33 months 30 0.6272 0.0592 0.000 

Fifth (Fourth to Fifth Birth)     

<=33 months (ref) 74    

>33 months 33 0.6987 0.0779 0.001 

Sixth (Fifth to Sixth Birth)     

<=33 months (ref) 81    

>33 months 32 0.6134 0.0868 0.001 

Six Plus (Six and above)     

<=33 months (ref) 97    

>33 months 39 0.6357 0.0769 0.000 
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Table 2 Neonatal Deaths as an outcome of Community distance to All-Weather Roads  

GLIMMIX Estimates Estimate SE Pr>|t| CI 
     Lower Upper 
Model 1 (Unconstrained)      

Intercept -2.7247 0.13 <.0001 -2.9906 -2.4588 

Model 2  
(Random Intercept Fixed Slope Co-variate at Level 1) 

Level 1 predictor      

 Intercept -2.1186 0.18 <.0001 -2.4782 -1.7589 

 TT inj -0.7310 0.16 <.0001 -1.0541 -0.4080 

 Literacy -0.2151 0.18 0.2356 -0.5705 0.1404 

 Sex of Child -0.2236 0.16 0.1561 -0.5326 0.08547 

 Marriage to First IBI 0.1085 0.17 0.5134 -0.2169 0.4339 

Model 3      

(Random Intercept Fixed Slope Outcome dependent on Level 2 Covariate (connectivity) 

Level 1 predictor      

 Intercept -1.8416 0.22 <.0001 -2.2883 -1.3949 

 TT inj -0.7181 0.16 <.0001 -1.0414 -0.3948 

 Literacy -0.2156 0.18 0.2339 -0.5706 0.1395 

 Sex of Child -0.2230 0.16 0.1574 -0.5322 0.0861 

 Marriage to First IBI 0.1060 0.17 0.5230 -0.2195 0.4316 

Level 2 predictor      

 Distance to all weather   road (km) -0.0968 0.06 0.0914 -0.21 0.01643 
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Environmental Factors Affecting Health in Northeastern Region of India: A 
Multilevel Analysis  

Abstract 
This study examines household and village level environmental effects on the prevalence of diseases among households 
in Northeastern India. It uses data from the National Family Health Survey-2 (1998-99). Results are obtained from the 
estimated multilevel logistic regression model. There are 12564 households of eight Northeastern states viz., Arunachal 
Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland, Tripura and Sikkim under this study and persons belonging 
to 10.4 percent households have been reported suffering from some diseases during two weeks preceding the survey and 
out of which members belonging to 3.77 percent household are suffering from waterborne diseases. In these reported 
diseases have been classified into the following five categories viz., (i) respiratory disorder, (ii) diarrhea & 
gastroenteritis, (iii) fever, jaundice, typhoid, (iv) delivery-related injuries and diseases for newborn babies, and (v) other 
diseases. It was found that the availability of doctors, the distance to medical facilities from the village, sources of 
drinking water, separate kitchens, toilet facilities, type of house, and urban-rural set-up have a significant impact on 
disease prevalence. This study has the potential for a better understanding of environmental factors associated with 
disease prevalence in the survey population and implementing of the National Population and Health Policies. 

Keywords: Prevalence of diseases, Environmental determinants, logistic regression. 

1. Introduction 
In the constitution of the World Health Organization, health is defined as “a state of complete physical, mental, and 
social well-being and not merely the absence of disease or infirmity” [21, 22]. In the context of health, Last [13] defined 
environment as “all that which is external to the individual human host. It can be divided into physical, biological, 
social, cultural, any or all of which can influence health status in a population.” This definition is based on the notion 
that a person’s health is determined by genetics and the environment. There are close links between the environment 
and people’s health [1, 3, 5, 11]. A high-quality environment enables people to live longer in good health. 
Environmental factors have a huge impact on people’s health. Globally, every year hundreds of millions of people suffer 
from respiratory and other diseases associated with indoor and outdoor pollution. Four million infants and children die 
every year from diarrheal diseases, largely as a result of contaminated water or food. Two million people die from 
malaria every year while 267 million are ill with it at any given time [4]. Three million people die each year from 
tuberculosis and 20 million are actively ill with it [4]. Half a million die as a result of road accidents. Hundreds of 
millions suffer from poor nutrition. This picture is far gloomier for any developing country like India. Almost all these 
health problems could be prevented [22]. Only a few studies on environmental factors affecting morbidity have been 
reported in India [12, 18]. In the international context, Saathoff et al [17], Wakou and Bell [20], Tipayamongkholgulet al 
[19], Dale et al [2], Dyer [4], and Sack et al [16] identified different environmental factors associated with prevalence*1 
of various diseases. 

In this paper, we use both traditional and multilevel logistic regression models to identify a set of environmental 
determinants of morbidity in households using the Indian National Family Health Survey (NFHS) [14] data collected 
during 1998-99 on diseases in every household member. This study also analyzed the impact of different environment 
covariates on the prevalence of waterborne diseases in households for the same set of data. Our analysis is restricted to 
all Northeastern states including Sikkim. 

2. Materials and Methods 
2.1 Data Sources 
To achieve the objective, data has been extracted from the second round of NFHS. It was conducted in 1998-99 under 
the auspices of the Ministry of Health and Family Welfare, India, and funded by the United States Agency for 
International Development (USAID). Data collection from 26 states was carried out in two phases, in the first phase 
data collection began in November 1998 in 10 states, and the second phase began in March 1999 in the remaining 
states. 

2.2 Methodology 

 
1* The prevalence rate (P) for disease is calculated as 
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Multilevel models [6,7,8,10,15,23] existence of hierarchical data by allowing for residual components at each level in 
the hierarchy. In the present study, a two-level model is considered, which allows for the grouping of household 
outcomes within village quantifying variations at each level. Thus, the residual variance is partitioned into a 
between-village component (the variance of the village-level residuals) and a within-village component (the variance of 
the household-level residuals). The village residuals, often called ‘village effects,’ represent unobserved village 
characteristics that affect household outcomes. It is these unobserved variables that lead to a correlation between 
outcomes for the households from the same village.  

Many explanatory variables affecting the prevalence of disease are reported in this survey. Though the hierarchical 
structure of NFHS data involved many levels viz., households, village, district, state. In the present study, a two-level 
viz., household and village are considered for analysis with households nested within villages. There may be variation at 
the household level and between villages. The multilevel analysis may be used to quantify variations at each at each 
level, i.e., household and village. This may help to assess the contribution of covariates at a level regarding variability 
present at that level as well as at other levels. Considering 2-level data structures where we have a sample of households 
are nested within the village (level 2 units), multilevel logistic regression [6,7,8,10,15] is given as follows: 

For the th household in the thvillage, observe a binary response 

 

 

 

where , is the probability that household in the village having diseases during 
the last five years; and are vectors of households and village level characteristics; and and are vectors of 
estimated parameter coefficients.  

The level-2 random variation is described by the term , i.e., unobserved variation at the village level and is an error 
term at the household level. 

The variability unexplained by the considered village-level variables is thus estimated in a multilevel approach through 
the estimation of in the following form 

, 

where follows standard normal distribution and hence the variability estimated by the multilevel approach 

known as “Multilevel Effect” given by the term . Accordingly, if , then there will be an increase in 

 by . On the other hand, if , then there will be a decrease in  by . This is how the 

consideration of multilevel analysis, in case data involves hierarchical structure, helps in adjusting and getting accurate 

results. 
3. Results and Discussion 
3.1 Descriptive Statistics 
Table 1 presents the frequency distribution of households wherein one or more members were suffering from any kind 
of disease (10.4 percent) in eight different states of the northeastern region at any time during the last five years from 
the reference date of the survey. The percentage of households having any kind of disease is minimum (7.5 percent) in 
Nagaland and maximum in Arunachal Pradesh which is double in that of Nagaland. From Table 1, it is also seen that 51 
percent of the households of Arunachal Pradesh suffer from waterborne diseases out of the total number of households 
having any kind of disease. On the other hand, Sikkim has the lowest, i.e., 19.3 percent of household suffering from 
waterborne diseases out of the total number of households affected by any kind of disease.   

This study considers all Northeastern States, viz., Assam, Meghalaya, Manipur, Mizoram, Nagaland, Sikkim, Arunachal 
Pradesh, and Tripura. 
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Table 1. Household Health Status of different states of North Eastern Region 

States 

Health status 
Total 

 Waterborne   
 diseases* Good health 

Disease 
present 

Count (Per 
cent) 

Count (Per 
cent) 

Count (Per 
cent) 

Count (Per 
cent) 

Assam 2821 (90.4) 300 (9.6) 3121 (100) 98 (32.7) 
Manipur 1509 (89.3) 180 (10.7) 1689 (100) 47 (26.1) 
Meghalaya 1079 (87.0) 161 (13.0) 1240 (100) 78 (48.4) 
Mizoram 1263 (92.0) 110 (8.0) 1373 (100) 46 (41.8) 
Nagaland 1048 (92.5) 85 (7.5) 1133 (100) 35 (41.2) 
Sikkim 1164 (89.6) 135 (10.4) 1299 (100) 26 (19.3) 
Arunachal 
Pradesh 

1213 (85.5) 206 (14.5) 1419 (100) 105 (51.0) 

Tripura 1156 (89.6) 134 (10.4) 1290 (100) 39 (29.1) 
Total 11253 (89.6) 1311 (10.4) 12564 (100)   (36.2) 

*Percentage distribution of waterborne diseases is done out of the all kinds of diseases of the respective states. 
The analysis is restricted to the morbidity pattern of the persons in a household reported for the last five years from the 
reference date of the survey. The reported diseases are primarily respiratory disorder (12.9 percent), Diarrhoea and 
gastroenteritis (7.8 percent), Malaria (8.9 percent), fever (10.6 percent), Heart disease (8.4 percent), cancer (6.2 percent), 
Jaundice and Cirrhosis of the lever (4.7 percent), Senility (15.9 percent), delivery related disease of the newborn (2.4 
percent), and others diseases (Influenza, Typhoid, pneumonia, measles, tetanus, poliomyelitis, diabetes, malnutrition, 
and others) having 22.2 percent (Table 2).  

Households are dichotomized as healthy (disease-free household) and non-healthy (at least one person suffering from 
any kind of disease anytime during five years before the reference date) concerning selected background characteristics 
of households. Henceforth we may refer to the healthy household as a good-health household and the non-healthy 
household as sick-household. The categorization of all the environmental characteristics such as place of residence, type 
of house, toilet facility, source of drinking water, village-level health facility, the main source of light, and the main 
source of cooking fuel-saving separate kitchen facility was found to be significant. 

Table 2. Distribution of diseases 

Name of diseases Frequency Per cent  

Respiratory disorder 
169 12.9 

 

Diarrhoea & Gastroenteritis 102 7.8  

Malaria 117 8.9  

Fever not classifiable 139 10.6  

Heart disease 110 8.4  

Jaundice & Cirrhosis of Liver 61 4.7  

Cancer (Malignant neoplasm) 81 6.2  

Delivery-related disease of newborn 32 2.4  

Senility 209 15.9  

Others 291 22.2  

Total 1311 100.0  

Here we want to know whether the type of residence has any relation with the health status of households in terms of 
selected background characteristics of households. Here our null hypothesis is that the health status of households is 
independent of the type of place of residence. It is seen that the value of the Pearson Chi-Square test is 35.881 for 1 
degree of freedom and the two-sided asymptotic p-value is 0.000, which is significant, and we reject our null hypothesis. 
Also, it is seen that rural households (11.4 percent) are more susceptible to sickness than urban households (7.7 percent). 
Next, we want to see whether the type of house has any relation to the health status of households. In this case, our null 
hypothesis is that the type of house and health status of households are independent. It is seen that the value of the 
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Pearson Chi-Square test statistic is 16.951 for 2 degrees of freedom and the two-sided asymptotic p-value is 0.000, 
which is significant, and we reject our null hypothesis. Now, we want to verify whether the type of toilet has any 
relation to the health status of households. Here our null hypothesis is that the type of toilet used by the household 
residents is independent of the health status of households. It is seen that the value of the Pearson Chi-Square test is 
30.274 for 2 degrees of freedom and the two-sided asymptotic p-value is 0.0001, which is significant, and we reject our 
null hypothesis. Again, we check whether the source of drinking water has any relation to the health status of 
households. Here our null hypothesis is that the source of drinking water used by the persons in the households is 
independent of the health status of households. It is seen that the value of the Pearson Chi-Square test is 12.533 for 3 
degrees of freedom and the two-sided asymptotic p-value is 0.006, which is significant, and we reject our null 
hypothesis. Then we want to find whether the health status of households has any relation with where members go for 
treatment. Here our null hypothesis is that the medical service facility for treatment is independent with healthy and 
non-healthy households. It is seen that the value of the Pearson Chi-Square test is 14.209 for 2 degrees of freedom and 
the two-sided asymptotic p-value is 0.001, which is significant, and we reject our null hypothesis. Next, we want to 
study whether the main source of lighting has any relation to the health status of households. Here our null hypothesis is 
that the main source of lighting is independent with the health status of households. It is seen that the value of the 
Pearson Chi-Square test is 13.642 for 1 degree of freedom and the two-sided asymptotic p-value is 0.000, which is 
significant, and we reject the null hypothesis. Also, it is seen that households using other than electricity and gas as the 
main source of lighting (i.e., Kerosene, Oil, and others) (11.7 percent) are more susceptible to diseases than households 
using electricity and gas (9.6 percent).  

Then, we want to verify whether the main cooking fuel has any relation to the health status of households. Here our null 
hypothesis is that the main cooking fuel is independent of the health status of households. It is seen that the value of the 
Pearson Chi-Square test is 21.506 for 1 degree of freedom and the two-sided asymptotic p-value is 0.000, which is 
significant, and we reject the null hypothesis. Also, it is seen that the households using other than electricity, LPG, and 
bio-gas as the main cooking fuel (i.e., wood, crop residues, dung cakes, coal, coke, lignite, charcoal, and others) (11.1 
percent) are more susceptible to diseases than the households using electricity, LPG, and bio-gas (7.9 percent). Finally, 
we want to check whether having a separate kitchen has any relation to the health status of households. Here our null 
hypothesis is that having a separate kitchen is independent of the health status of households. It is seen that the value of 
the Pearson Chi-Square test is 0.024 for 1 degree of freedom and the two-sided asymptotic p-value is 0.877, which is 
large, and we have no evidence against the null hypothesis.  

Table 3. Tukey’s HSD test for pairwise comparisons of between groups 

Comparisons 
p-values 

(all diseases) 
p-values 

(Waterborne 
diseases) 

Type of house 
 Pucca vs. semi-pucca 
 Pucca vs. kutcha 
 Semi-pucca vs. kutcha 

 
0.198 
0.000 
0.044 

 
0.004 
0.000 
0.001 

Toilet facility 
 Pit toilet vs. flush toilet 
 Pit toilet vs. other 
 Flush toilet vs. others 

 
0.001 
0.011 
0.000 

 
0.000 
0.000 
0.000 

Source of drinking water 
 Hand pump vs. well water 
 Hand pump vs. piped water 
 Hand pump vs. others 
 Well water vs. piped water 
 Well water vs. others 
 Piped water vs. others 

 
0.633 
0.495 
0.196 
0.025 
0.008 
0.797 

 

Medical service facilities 
 Government vs. private 
 Government vs. others 
 Private vs. others 

 
0.007 
0.157 
0.002 

 
0.007 
0.996 
0.231 

Dependent variable: Health status 
From the chi-square test, it is not possible to find out which group of toilet facilities, source of drinking water, and 
medical service facilities are significantly different for all diseases and as well as for waterborne diseases, but in this 
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case, waterborne diseases were found to be insignificant. It needs to perform multiple comparison analyses [9, 24]. Here 
we apply Tukey’s honestly significant difference (HSD) test for pairwise comparisons of different groups for covariates 
under this analysis. The significant difference between pairs of groups (more than two) of a covariate as indicated 
by p-values is shown in Table 3. 

Similarly, the households can be dichotomised as healthy and suffering at least one person suffering from waterborne 
disease for the last five years before the reference date, concerning selected background characteristics of the household. 
According to the above, it is found from the Pearson Chi-Square test that all the explanatory variables, viz., Type of 
residence, Type of house, Toilet facility, Medical service facilities, Main source of lighting, Main cooking oil saving 
Source of drinking water and Separate room used as a kitchen are found to be significant at 5 percent level of 
significance. 

Table 4. Logistic analysis of healthy and non-healthy households 

Category  Odd ratio S.E.  Sig. 
95.0% C.I. for odd ratio  

Lower Upper  

Type of residence  

Urban 1      

Rural 1.357*** .087 .000 1.144 1.611  

Type of house  

Pucca 1      

Semi-pucca 1.036 .104 .731 .846 1.270  

Kachha 1.109 .105 .321 .904 1.362  

Source of drinking water  

Piped water 1      

Hand pump .761*** .087 .002 .641 .902  

Well water .649*** .091 .000 .543 .776  

Others .876* .081 .100 .748 1.027  

Type of toilet  

Flush toilet 1      

Pit toilet 1.146 .092 .138 .957 1.372  

Others 1.286** .109 .021 1.038 1.593  

Medical Service Facilities  

Govt. health facility 1      

Private health facility .924 .082 .338 .787 1.086  

Others 1.199* .108 .094 .970 1.482  

Main source of lighting  

Electricity & Gas 1      

Others 1.107 .072 .157 .962 1.274  

Main cooking fuel  

Electricity, LPG & 

Bio-Gas 
1     

 

Others 1.085 .102 .425 .888 1.324  

Separate kitchen  

No 1      

Yes 1.067 .064 .313 .941 1.210  

Constant .075*** .112 .000    
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Here the symbols *,**, and *** represent the level of significance at 10 percent, 5 percent and 1 percent respectively. 
3.2 Logistic Regression Analysis: 
In this study, households are dichotomized as healthy (disease-free during the last five years) and non-healthy (at least one 

of the members was reported as suffering from some kind of disease during the last five years). It is reported that 10.5 

percent of the total households in the northeastern region are non-healthy households. In this study, the healthy and 

non-healthy status of the household is considered as the response variable. Logistic regression is suitable for 

understanding the relationship between this response variable and some explanatory variables considered in the following 

Table 4. 
Table 5. Logistic analysis of healthy and households suffering from waterborne disease 

Category  Odd ratio S.E. Sig. 
95.0% C.I. for odd ratio  

Lower Upper  

Type of residence  

Urban 1      

Rural .741** .152 .049 .550 .998  

Type of house  

Pucca 1      

Semi-pucca .672 .206 .050 .449 1.006  

Kachha .543*** .204 .003 .364 .809  

Source of drinking water  

Piped water 1      

Hand pump 1.761*** .148 .000 1.317 2.355  

Well water 1.461*** .137 .006 1.116 1.912  

Others 1.373** .130 .015 1.064 1.770  

Type of toilet  

Flush toilet 1      

Pit toilet .672** .171 .020 .481 .939  

Others .506*** .191 .000 .348 .734  

Medical Service Facilities  

Govt. health facility 1      

Private health facility 1.123 .138 .400 .857 1.472  

Others 1.090 .187 .645 .756 1.572  

Main source of lighting  

Electricity & Gas 1      

Others .875 .112 .233 .702 1.090  

Main cooking fuel  

Electricity, LPG & 

Bio-Gas 
     

 

Others .726* .194 .100 .496 1.063  

Separate kitchen  

No 1      

Yes .911 .102 .360 .746 1.113  

Constant 84.023*** .229 .000    
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Here the symbols *,**, and *** represent the level of significance at 10 percent, 5 percent, and 1 percent respectively. 
The fitted logistic regression equation for the general health status of households is written as follows: 

 

Explanatory variables such as place of residence, source of drinking water, type of toilet, and place of treatment were 
found to be significantly associated with morbidity. The rural population in the northeastern region was 36% more 
likely to suffer from any kind of disease in comparison to that of the urban population. Surprisingly, it is observed that 
people using other than piped drinking water have less likely to suffer from any sort of disease. We cannot provide any 
plausible explanation for such a type of result. In a recent study [21] it is reported that the quality of water (hard or soft) 
has a definite impact on disease susceptibility. In contrast when we consider only the waterborne disease then the 
population consuming piped drinking water is less likely to be sick. 

The estimated logistic regression equation for waterborne disease households is written as follows: 

 

 

3.3 Multilevel Logistic Analysis 
Household with pit toilet/kachha toilet were 15% /27% more likely to have a sick person as compared to those with 
flush toilets.  

Explanatory variables such as type of residence, source of drinking water, type of toilet, main cooking fuel, and type of 
house were found to be significantly associated with morbidity due to waterborne diseases. The rural population was at 
lower risk of suffering from waterborne diseases in comparison to their counterparts living in urban areas. The rural 
population was at a 48% higher risk of suffering from any sort of disease in comparison to those of urban areas. 
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Table 6. Multilevel logistic analysis of healthy and non-healthy households 

Category  Odd ratio S.E. Sig. 95.0% C.I. for odd ratio  

Lower Upper  

Type of residence  

Urban 1      

Rural 1.483*** 0.113 .000 1.188 1.851  

Type of house  

Pucca 1      

Semi-pucca 0.99 0.107 .720 0.803 1.221  

Kachha 1.041 0.11 .311 0.839 1.291  

Source of drinking water  

Piped water 1      

Hand pump 0.79*** 0.095 .001 0.656 0.951  

Well water 0.685*** 0.097 .000 0.567 0.829  

Others 0.912** 0.087 .050 0.769 1.082  

Type of toilet  

Flush toilet 1      

Pit toilet 1.145 0.095 .125 0.95 1.379  

Others 1.273** 0.113 .016 1.02 1.588  

Medical Service Facilities  

Govt. health facility 1      

Private health facility 0.931 0.087 .238 0.785 1.105  

Others 1.192* 0.113 .085 0.956 1.488  

Main source of lighting  

Electricity & Gas 1      

Others 1.102 0.076 .150 0.949 1.279  

Main cooking fuel  

Electricity, LPG & Bio-Gas 1      

Others 1.067 0.107 .400 0.865 1.316  

Separate kitchen  

No 1      

Yes 1.089 0.067 .215 0.955 1.241  

Constant 0.071 0.134 .000    

Here the symbols *,**,*** represent the level of significance at 10 percent, 5 percent and 1 percent respectively. 
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Binary multilevel logistic regression equation is given as follows: 

 

 

where  

 

Among village-level variables, households having access to the private health facility in the village is 8 percent less 
likely and those having access to other health facilities (quack and other traditional medical facilities) are 20 percent 
more prone to sickness in comparison to the village having government health facilities. 

Table 7. Multilevel logistic analysis of healthy and households suffering from waterborne diseases 

Category  

 

Odd ratio 

 

S.E. 

 

Sig. 

 

95.0% C.I. for odd ratio  

Lower Upper  

Type of residence  
Urban 1      
Rural 0.728** 0.16 .035 0.532 0.997  

Type of house  
Pucca 1      
Semi-pucca 0.685** 0.206 .045 0.458 1.026  

Kachha 0.562*** 0.208 .002 0.374 0.845  

Source of drinking water  
Piped water 1      
Hand pump 1.732*** 0.16 .000 1.265 2.369  

Well water 1.449*** 0.148 .002 1.084 1.937  

Others 1.265*** 0.138 .005 0.965 1.658  

Type of toilet  
Flush toilet 1      
Pit toilet 0.703** 0.17 .015 0.504 0.981  

Others 0.567*** 0.193 .000 0.388 0.827  

Where do go for treatment  
Govt. health facility 1      
Private health facility 1.127 0.143 .350 0.852 1.492  

Others 1.089 0.192 .540 0.747 1.586  

Main source of lighting  
Electricity & Gas 1      
Others 0.857 0.118 .230 0.68 1.08  

Main cooking fuel  
Electricity, LPG & Bio-Gas 1      
Others 0.739* 0.198 .090 0.501 1.089  

Separate kitchen  
No 1      
Yes 0.856 0.106 .350 0.696 1.054  
Constant 82.85*** 0.255 .000    

Here the symbols *,**,*** represent the level of significance at 10 percent, 5 percent and 1 percent respectively. 
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Binary multilevel logistic regression equation for the response variable waterborne diseases is given as follows 

 

 

where  

 

The lone village level variable was found to be significantly associated with disease prevalence under the multilevel 
model. This sentence does not make any sense. Which variable? Moreover, only 11 percent of the variability in disease 
prevalence (all diseases) could not be explained by the considered set of covariates. Table 8 presents results under 
multilevel analysis using the same set of covariates as described above. Comparing the results under both analytical 
methods, the results were virtually equivalent in terms of the same direction under traditional logistic regression 
analysis with those obtained under multilevel analysis. As under traditional regression analysis, the variables residence, 
source of drinking water, and type of toilet were found to be significantly associated with disease prevalence also under 
multilevel analysis. However, in traditional analysis, the village-level variable is only significant with other health 
facilities. The main source of lighting and the main source of cooking fuel was found to have an insignificant effect on 
morbidity status. The village-level variable namely the private health facility in the village had an insignificant impact 
on disease prevalence.  

In multilevel analysis also the source of drinking water had a strong impact on the waterborne disease prevalence. 
Households having hand pump/well water as a source of drinking water have 73/45 percent higher risk of suffering 
from waterborne diseases in comparison to that of piped water.  

Whether people are healthy or not is determined by many different factors including their circumstances, behaviour, and 
environment. This paper identifies a few environmental factors affecting disease prevalence. It is suggested that the 
community at the Panchayat level should be empowered to control the few key environmental determinants viz., the 
supply of drinking water, sanitation system, and health service facility for health promotion in this part of India. 

In this study, the variables for the diseases reported in NFHS 2 were seen as respiratory disorder, diarrhea and 
gastroenteritis, fever, jaundice, and diseases for newborn babies. To study the environmental factors affecting health, 
these factors played an important role. But, in the later part of the NFHS surveys, many of the variables were missing. 
So, in my opinion, the importance of the study with NFHS 2 survey data lies here. A few recent works have been 
noticed in [1], [3], [5] and [11]. 
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Estimating the Duration of Postpartum Amenorrhea through Bayesian 
Approach 

 
Abstract 
Postpartum amenorrhea (PPA) is the interval between the termination of a woman's pregnancy and the resumption of 
menstruation, during which conception does not occur. PPA plays a crucial role in birth spacing and fertility. 
Understanding the factors influencing PPA duration is essential for family planning and reproductive health programs. 
Previous studies have reported variations in PPA duration across different populations, but there is a lack of research on 
PPA in the specific context of Manipur, India. The objective of this study was to investigate the relationship between 
mother's age and PPA duration in women residing in Manipur, India, using a Bayesian approach. Additionally, the study 
aimed to examine the variability of PPA duration based on religion and family status by applying zero-inflated models. 
The utilization of Bayesian techniques and longitudinal data analysis would provide valuable insights into the 
determinants of PPA duration in this population. The analysis of longitudinal data from 1296 eligible women in rural 
areas of Manipur revealed that the average duration of PPA was 6.6 months. There was no significant difference in PPA 
duration among different districts of Manipur. The study identified a positive relationship between mother's age and 
PPA duration, indicating that older mothers tend to have longer PPA. Furthermore, religion and family status were 
found to influence PPA duration, with variations observed between different subgroups. 

The study contributes to the understanding of PPA duration in women residing in Manipur, India. The findings highlight 
the importance of considering the mother's age, religion, and family status in predicting PPA duration. These insights 
can inform family planning interventions and reproductive health programs in the region. The application of Bayesian 
modeling techniques allowed for a comprehensive analysis of PPA duration and provided robust results. Further 
research is warranted to explore additional factors influencing PPA and to validate these findings in other populations. 

Keywords: PPA, cross-sectional data, ZIP model, Manipur 

1. Introduction 
In the field of statistical modeling, the Bayesian approach has gained widespread acceptance, particularly with the 
advent of WinBUGS software. Ghosh and colleagues [1] have introduced a Bayesian Zero-Inflated Poisson (ZIP) model 
specifically designed for cross-sectional data. Additionally, a semi-parametric ZIP model has been developed to enhance 
the Poisson component [2]. Various studies [3] have explored the application of zero-inflated models, including the 
Poisson hurdle model and the Zero-alter model, highlighting their versatility and effectiveness. The Bayesian 
methodology has also been employed in mixed distribution models for analyzing cross-sectional data [4]. Furthermore, 
it has been utilized in zero-inflated models to examine NFHS-3 data, focusing on child mortality distribution [5]. These 
advancements underscore the robustness and applicability of Bayesian techniques in addressing complex statistical 
challenges. Moreover, most population-based studies addressing women's reproductive health issues rely on 
cross-sectional analyses rather than longitudinal data analysis. Postpartum amenorrhea (PPA), a physiological process 
following each conception, refers to the interval between the end of a woman’s pregnancy and the onset of her next 
menstrual cycle. During this period, conception does not occur. As it tends to increase the birth interval and hence to 
reduce women's fertility over her life span, especially in societies where the use of contraceptive methods is not 
widespread. It depends on a number of factors which vary from woman to woman in a population [6-13]. The most 
important conclusion of these studies is that breast feeding increases the duration of PPA. This chapter delves into the 
application of the Bayesian approach to address the complexities of longitudinal zero-inflated data concerning women 
living in Manipur, a state in eastern India that shares its border with Myanmar. By focusing on this specific population, 
the chapter aims to provide a nuanced understanding of how Bayesian techniques can effectively manage and interpret 
the unique statistical challenges presented by this demographic. The study utilizes a longitudinal dataset that captures 
information on successive pregnancies. The primary objective of this research is two-fold: firstly, to investigate the 
relationship between a mother's age and the duration of postpartum amenorrhea using a Bayesian approach with cluster 
models, and secondly, to examine the variability in the duration of postpartum amenorrhea among mothers based on 
their religion and family status by employing zero-inflated models. By employing these methods, the study aims to gain 
insights into the factors influencing postpartum amenorrhea duration in this population. 

2. Materials and Methods 
The study is based on the retrospective reporting data of 1296 eligible women surveyed during nine months 
(April-December, 2009) in rural areas of Manipur valley. Summary measures, including the mean and median, have 
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been calculated to analyze the data. The duration of postpartum amenorrhea (PPA) has been studied in relation to the 
mother's age, incorporating prior assumptions to enhance the analysis. This approach allows for a more detailed 
examination of how maternal age influences the length of PPA, providing valuable insights into the reproductive health 
patterns of the population under study. A survival analysis technique has been applied through Bayesian approach to 
identify the variability in PPA. The zero inflated models corresponding to the number of children have been dealt with 
Bayesian approach under longitudinal data analysis. The longitudinal observation of the duration of PPA is Yij for the 
p-dimensional covariates (Xij) for the ith indexed and jth units within clusters. The within-cluster and between-cluster 
specific regression coefficients can be expressed as the function of E(Y). Larmbert’s [14] zero mixed un-truncated 
Poisson distribution is further applied in this analysis. The frequencies of PPA durations are denoted with Y. The 
individual and time-specific data are also separated with Yij.  

2.1 Cluster Models 
The longitudinal response says the duration of PPA is Yij for the p-dimensional covariates (Xij) for the ith indexed and jth 
units within clusters. The within-cluster and between-cluster specific regression coefficients can be expressed as the 
function of E(Y). The widely used cluster-specific approaches are GLMMs in  the class of generalized linear models 
by including random effects in the linear predictor by given a vector bi of parameters to the ith cluster, for the jth unit, the 
conditional density of Yij is of the form 

f(Yij|bi,Xij,Zij,β)=exp[{Yijθij-c(θij)}ɸ+d(yij,ɸ)]                     … (1) 

where θij is the canonical parameter, c and d are functions of known form and ɸ is a positive scale factor. McCullagh 

and Nelder (1989) have formulated the θij as the function of the parameter β. Neuhaus et al. (2006) have assume that 

 E(Yij/bi,xij,zij)=g-1(zijbi+xijβ)       … (2) 
Where xij is the design matrix corresponding to β, zij is the design matrix corresponding to biand g is a monotonic 
differentiable function. Given bi, the model assumes that the responses Yi1,  . . . ,Yini for ith individuals ni

th PPA duration 
are independent. In this work, the random effects b and  have been assumed, where D is the independent 
parameter. To compute the model we have assumed the distribution for the random effects b, G(b/D), which is 
independent to the parameters value D. Let the response observation Yi= (Yi1,….Yini), the duration of PPA  are 
extended to ni-dimensional vectors. The likelihood has been assumed there with m independent cluster with ni units by 

     … (3) 

  =      … (4) 
2.2 Zero-Inflated Models 

In 1992, Lambert developed the zero mixed un-truncated Poisson distribution, a significant advancement in statistical 

modeling. The formulation of this model is based on  

P(Yi=0)=(1-p)+pe-μ, 0<p<1       … (5) 

, k=1, . . . α, 0<μ<α     … (6) 

We extended the model in equation (7.6) by ith individuals and jth observation with 

(1-pij)+pije-μij=1-pij(1-e-μij)=1-θij        … (7) 
where, i, j is used for ith individual jth observation. Heilbron (1994) has separated the “zero-altered model” in two parts 
by P(Yi=0;μ1i) and P(Yi=yi;μ1i) for yi>0. The model can be modified into 

P(Yi=0;μ1i)=e-μ1i, log(μ1i)=        … (8) 

and P(Yi=yi;μ1i)=e-μ1i, log(μ1i)=      … (9)  

     … (10) 

In 1994, Heilborn developed a model specifically designed to test the hypothesis regarding the presence of zero 

inflation in data sets. This model operates under the assumption that  

log(μ1i) = β+log(μ2i)         … (11) 
If β=0, the model conforms to the standard Poisson distribution. When β<1, the data exhibit zero inflation, indicating an 
excess of zero counts. Conversely, if β>n 1, the data are zero deflated, reflecting a scarcity of zero counts. Brain and 
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colleagues (2010) have thoroughly discussed the implications and applications of zero-inflated count data by 

 P(Yi=0)=1-pi, 0<p<1         … (12) 

, k=1, . . . , α, 0<μ<α       … (13) 

If (1-p)>e-μ, the data is inflated by zero and when (1-p)<e-μ the data is deflated with zero. When p=1, the data contain 

no zero counts, aligning with the characteristics of a standard Poisson distribution. The above-mentioned models are 

applied in the analysis on the duration of PPA.  The frequencies of PPA durations are denoted with Y. The individual 

and time-specific data are also separated with Yij. 
3. Analysis 
The duration of PPA and mother age as a subset of data from a more extensive longitudinal study involves the duration 
of PPA to n = 108 mothers, all of whom have at least T = 5 live births. The analysis here is focused on the impact of 
duration of PPA that is Yit, ith mothers duration of PPA at tth baby born on the mother’s age at birth that is wit, ith mothers 
with tth baby born and the extent to which there is heterogeneity in the overall smooth by a function of S(wit). 

Thus for each five birth history for ith mother, the stipulated equations are like   

      … (14) 
where (b1i, b2i) is assumed to follow the Normal distribution with N(0,D). The hyper parameter D-1 is further assumed 
to follow the Wishart prior with an identity scale matrix and two degrees of freedom. The random walk smooth is 
estimated over all (i, t) pairs using a normal prior with a single variance parameter, rather than the basis of successive 
ages within each fertility sequence, which would permit distinct variance parameters for each subject. A two chain run 
of 5000 iterations shows early convergence, with significant heterogeneity in the b2i, namely a posterior mean for var(b2) 
of 1.35, and 95% credible interval (0.95, 1.74). The estimated posterior mean of the β1i is 0.009 with 95%CIs (0.010, 
0.009) and β2i, the estimated posterior mean is 0.33 with 95%CIs (0.472, 0.188). It shows that β2i has some useful effect 
on Yit and β2i has no effect on Yit. The analysis has been carried out through the present data. Here, we assume the 
distributions of βi1, βi2, and β0 to be conventional non-informative prior. In the present data, Wishart prior for the 
deviation index is consistent with continuous and binary outcome measures (Nehulaus et al., 2006). In order to derive 
the posterior distribution of β0, we use the posterior mean value of the deviation index and generate the 1000 random 
sample values. The MCMC algorithm has been used in Gibbs sampling through the WinBUGS software. The algorithm 
has been run for 50,000 iterations, which is composed of a burn-in of 25,000 iterations and posterior inference based on 
the next 25,000 iterations which were thinned at 25 in order to have 1000 Pseudo-independent posterior sample values. 

The posterior mean and 95% credible interval (CIs) for β0, β1, and β2 are presented in Table 2 along with the resulting 
regression coefficients. For this Model the DinV[1, 1] of the posterior mean is 97.21 with large CIs (132,49.93). 
Similarly, the between-cluster DinV[1, 2] had a relatively narrow  CIs(5.04,5.26). The D [1, 1] had a posterior mean of 
0.01 and a 95 percent CI of (0.02, 0.02). For the difference in model 2, the conclusions are similar, with a similar 
posterior mean for the within and between regression coefficients. It can be concluded that the posterior mean for the 
between-cluster coefficient is less in comparison to the within-subject regression coefficient. Table 1 depicts the 
estimates of the duration of postpartum amenorrhea as calculated by the current status method for women at their 
different ages. The findings have been compared with those of earlier studies to indicate any change in the pattern of 
postpartum amenorrhea in the population for different subgroups though the levels may differ due to differences in data 
sources and methods employed. In this work, the density function f(x) has been assumed to be a mixture distribution. 
The distribution of f(x) is again expressed as the equation by 

f(x)=wf1(x)+(1-w)f2(x), where 0<w<1      … (15) 
Here, f1(x) and f2(x) are assumed to follow the beta distribution and w is the additive parameter to separate f(x) into 
a mixture distribution of functions f1(x) and f2(x) respectively. The vague prior is used to reduce the effect of prior 
influences on the posterior mean. The gamma distribution has been obtained for f1(x) and f2(x). The value of w has been 
computed through a simulation procedure. The posterior mean of PPA duration has been obtained by w=0.42. A total of 
10000 burns have been carried out to obtain the mean value of PPA. The computed age-wise PPA durations have been 
shown in Table 5. 

4. Findings  
The average duration of postpartum amenorrhea (PPA) has been observed to be approximately 6.6 months.  There is 
no significant difference in postpartum amenorrheic periods in different districts of Manipur. Among the four districts, 
the duration of amenorrhea ranged from a high of 6.6 months among women from Imphal West districts to a visibly low 
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of 6.4 months in Imphal East. The mean length of amenorrhea was also observed to increase from 6.4 months for 
women for their first child to 6.9 months for the fifth baby’s birth in Imphal West district. The postpartum amenorrhoeic 
duration of the observed women has also increased from 5.4 months for 1st child to 6.6 months for 5th child in 
the Thoubal District. The women of Imphal East and Bishnupur have reduced the mean duration of postpartum 
amenorrhea from 5.3 to 3.9 and from 6.7 to 6.3 months in 1st live birth to 5th live birth shown in Table-4. The duration of 
PPA plays an important role in controlling the birth spacing between two children in an overpopulated country like 
India.  

Table - 8 presents insightful data regarding the percentage of zero counts and mean zero count across different durations 
of postpartum amenorrhea (PPA) and types of family structures. Notably, at the first delivery, joint families exhibit a 
higher percentage of zero counts (6.32% compared to 4.55% in nuclear families), although nuclear families tend to have 
longer observed durations of PPA. Table 2 illustrates a non-linear trend over time in PPA durations. Among joint 
families, zero observations notably decrease during the 4th and 5th births. Demographic characteristics of women, 
including family status, adoption of sterilization methods, and religious affiliation, are detailed in Table 7. The majority 
of women (57.5%) are from nuclear families, with a small proportion (2.2%) having adopted sterilization methods. 
Hindu women comprise 85% of the sample, followed by 12.1% identifying as Meitei. 

Comparing estimates from Table - 6, it is evident that the estimated values of the Binomial and Poisson distributions are 
identical. Specifically, the average β11 is 0.27 (1.1) for the Binomial distribution and 1.45 (0.09) for the Poisson 
distribution, indicating strong agreement between the two methodologies. Incorporating prior evidence into the 
Zero-Inflated Poisson (ZIP) model estimates for β12 and β22 are -2.03 (0.98) in the Binomial model and 0.09 (0.12) in 
the Poisson model. The Deviance Information Criterion (DIC) values further illustrate the superior fit of the 
Zero-Altered Poisson (ZAP) model (234.67) compared to the ZIP model (286.32) and Hurdle model (293.65), as 
obtained through WINBUGS software. Table 6 underscores that including the adoption of sterilization in the Binomial 
distribution yields results comparable to those of the Poisson distribution within the ZIP model. The posterior 
distributions in mean (SD) across different models reveal consistent outputs. For instance, parameter estimates and 
standard deviations (SD) are nearly identical for the Binomial distribution in relation to family status within the ZIP 
model. 

Examining the adoption of sterility, the posterior distributions of β28 are estimated at -0.14 (0.14) and 1.13 (0.57) for 
the Binomial and Poisson distributions, respectively. This indicates a negative relationship in the Binomial model and a 
positive relationship in the Poisson model with respect to PPA. These contrasting outcomes highlight the divergent 
conclusions drawn by each model on this aspect. Furthermore, the posterior distributions for caste and time of delivery 
yield estimates of 0.68 (0.94) and 2.42 (31.9) for the Binomial and Poisson distributions, respectively. Meanwhile, the 
posterior mean (SD) for variance components ρ, σ1, and σ2 are found to be -0.04 (0.09), 1.29 (0.3), and 1.65 (0.16), 
respectively. These findings provide a comprehensive view of the statistical analyses conducted, shedding light on the 
nuanced relationships and variances explored within the study framework. 

5. Discussion 
The average duration of postpartum amenorrhea (PPA) was found to be 6.6 months in this study. However, previous 
research has reported considerable variation in PPA duration across different countries. For example, studies from 
Bangladesh have documented prolonged lactational amenorrhea lasting from 12 to 17 months [15-17]. A retrospective 
study conducted in the Philippines reported an average PPA duration of 8.5 months [18-20]. In contrast, some developed 
countries have reported median durations as low as 3 months [21]. Among Nepalese mothers residing in rural areas, the 
tri-mean of the amenorrheic period was found to be 9.6 months, with a median of 8.4 months and a mean of 10.4 
months [22]. On the other hand, Bangladesh exhibited a longer mean amenorrheic period of 12.6 months [23]. 

Factors such as parity, age, survival status of the child, breastfeeding practices, and socioeconomic status of the mothers 
have been identified as influential factors in the timing of amenorrhea among Nepalese mothers [24]. The present 
findings support the notion that a mother's age significantly affects the duration of PPA. This study extends existing 
approaches to analyzing PPA duration in women under observation [25-26], using cluster-specific modeling on response 
observations. The methods employed here can be further extended to include different covariates related to PPA among 
women aged between 15 and 42 years. 

One advantage of the proposed methods is their ability to incorporate prior information, which allows for posterior 
inference in cluster-specific modeling. Alternatively, multivariate analysis using different distribution assumptions, such 
as frequentist approaches, could prove useful. The results of the relationship between the duration of PPA and mothers' 
age demonstrate that the choice of link function and the assumed distribution of random effects can influence the 
functional form of the relationship.  
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Table 1. Observed distribution of PPA with respect to mothers Age  

PPA  
(in month) 

Age of mother (in year) 
Upto 20  20 to 25  25 to 31  31 to 35  36 to 40  41 to 45  Total 

1 3 12 5 1 1 0 22 
2 3 3 1 0 0 0 7 
3 59 111 95 28 3 1 297 
4 5 5 2 2 1 0 15 
5 0 4 2 0 0 0 6 
6 1 4 4 3 0 0 12 
7 3 2 4 1 1 0 11 
8 1 8 2 1 0 0 12 
9 1 0 0 0 0 0 1 

10 3 7 0 0 0 0 10 
12 17 39 32 27 7 0 122 
18 0 3 2 1 0 0 6 
24 4 5 7 2 0 0 18 
36 1 0 0 0 0 0 1 

Total 101 203 156 66 13 1 540 

 
Table-2. Average statistics of PPA for the observed women 

Parameter Mean(SD) HPD (97.5%, 2.5%) 
Β0(Intercept) 0.00(0.013) (0.03, -0.01) 

Β1i(RW1) 0.009(0.14) (0.010, 0.009) 

Β1i(RW1) 0.33(0.19) (0.472, 0.188) 

D[1,1] 0.01(0.00) (0.02, 0.00) 
D[1,2] 5.9E-4(0.01) (0.02, -0.02) 
D[2,2] 0.34(0.15) (0.713, 0.122) 

Dinv[1,1] 97.21(19.65) (132.0, 49.93) 
Dinv[1,2] -0.07(2.64) (5.04, -5.26) 
Dinv[2,2] 3.64(1.83) (8.22, 1.46) 

 

Table 3. Distribution of observed mothers with duration of PPAand order of birth 

Order of 

birth 

PPA (in month) Total 

1 2 3 4 5 6 7 8 9 10 12 18 24 36 

1st 5 2 62 3 1 2 1 1 1 2 22 1 4 1 108 

2nd 4 2 59 3 3 1 3 1 0 2 24 2 4 0 108 

3rd 4 1 59 3 1 2 2 5 0 2 24 1 4 0 108 

4th 5 1 58 3 1 3 3 2 0 2 26 1 3 0 108 

5th 4 1 59 3 0 4 2 3 0 2 26 1 3 0 108 

Total 22 7 297 15 6 12 11 12 1 10 122 6 18 1 540 
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Table 4. Observed duration of PPA according to order of birth 

District Mean & 
Median 

Orders of Birth 

1st 2nd 3rd 4th 5th 

Imphal West Mean 6.39 6.80 7.82 8.44 6.88 
Median 3.00 3.00 5.00 7.00 3.00 

Imphal East Mean 5.34 5.86 6.10 6.94 3.92 
Median 3.00 3.00 3.00 3.00 3.00 

Bishnupur Mean 6.71 7.11 7.18 7.28 6.29 
Median 3.00 3.00 3.00 3.00 4.50 

Thoubal Mean 5.83 6.24 6.81 6.77 6.52 
Median 3.00 3.00 3.00 3.00 3.00 

 
Table 5. Estimated duration of PPA with mother’s age 

Duration 
of PPA 

Age of mother (in year) 
Up to 20  20 to 25  25 to 31  31 to 35  36 to 40  41 to 45 Total 

Posterior 
mean 

4.64 4.50 4.61 4.73 4.83 4.89 4.35 

SD 0.04 0.03 0.05 0.04 0.02 0.00 0.03 

 
Table 6. Posterior mean of PPA with parameters in Bayesian Approach 

Model Parameter Mean (SD) (97.5%, 2.5%) 
Binomial (Intercept)β11 0.27(1.10) (2.36, -0.95)  

(Order of birth5)β12 -2.03(0.98) (-0.55, -3.57) 
(Order of birth15)β13 2.42(31.90) (66.52, -57.41) 
(caste)β14 0.68(0.94) (2.09, -0.52)  
(caste * Order of 
birth5)β15  

1.84(0.97) (3.30, 0.34) 

(caste * Order of 
birth15)β16 

-1.48(30.87) (58.60, -62.55) 

(Adoption of 
sterilization)β17 

0.49(0.12) (0.73, 0.25) 

(Sex(male/female) of 
child first  ever 
born)β18 

-1.13(0.57) (-0.02, -2.35) 

Poisson (Intercept)β21 1.45(0.09) (1.63, 1.31) 
(Order of birth5)β22 0.09(0.12) (0.35, -0.12)  
(Order of birth15)β23 1.07(30.09) (59.78, -59.63) 
(caste)β24 0.12(0.15) (0.34, -0.19)  

(caste * Order of 
birth15)β25 

-0.08(0.12) (0.17, -0.33)  

(caste * Order of 
birth15)β26 

-0.34(32.04) (61.7, -64.28) 

(Adoption of 
sterilization)β27 

-0.03(0.08) (0.16, -0.17) 

(Sex(male/female) of 
child first  ever 
born)β28 

-0.14(0.14) (0.11, -0.44)  

Variance 
component 

Ρ -0.04(0.09)   (0.12,-0.23)  
1 1.29(0.30) (1.92, 0.79)  
2 1.65(0.16) (1.99, 1.34) 
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Table 7. Descriptive statistics of family 

Characteristics Frequency (%) 
Type of Family 

Joint 

Nuclear 

Adoption of Sterilization 

Yes 

No 

Religion of wife 

Hindu 

Meitei   

Muslim 

Christian and others 

Sex of child first ever born 
Male 

Female 

 

551(42.5%) 

745(57.5%) 

 

29(2.2%) 

1267(97.8%) 

 

1101(85%) 

157(12.1%) 

18(1.4%) 

20(1.5%) 

 

562(43.4%) 

594(45.8%) 

Table 8. Summary statistics for the fertility data 

Time of 

delivery  

Type of 

family 

N Percent 

of zeros 

Mean non-zero 

months of PPA(SD) 

1st Nuclear 

Joint 

59 

82 

4.55 

6.32 

6.11(5.35) 

5.71(4.79) 

2nd Nuclear 

Joint 

166 

246 

12.80 

18.98 

6.33(5.31) 

6.56(5.12) 

3rd Nuclear 

Joint 

364 

373 

28.08 

28.78 

6.81(5.60) 

7.15(5.49) 

4th Nuclear 

Joint 

560 

446 

43.20 

34.41 

7.12(6.04) 

7.64(5.77) 

5th Nuclear 

Joint 

679 

509 

52.39 

39.27 

6.30(5.23) 

6.26(4.85) 
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Changing Impact of Son-Preference on the Family Building Process in India: 
A Parity Progression Ratio Analysis 

 
Abstract 
The manifestations of son preference over daughter have been common in India. This is expected to lose its rheostat 
with time and developmental activities. The pace may be greater in urban than rural areas. The present chapter is an 
attempt in this direction; it aims to assess the impact of son preference over daughter over time and between urban and 
rural India. For this, it adopts the concept of parity progression ratios based on Kaplan-Meier life table approach as the 
measure of fertility. It uses the birth history data of currently married women aged 40-49 years covered in two 
consecutive rounds of India’s National Family Health Survey, i.e., NFHS-3 (2005-06) and NFHS-4 (2015-16). Each 
parity transition (up-to-fifth-order births) was analyzed, separately, with respect to the number of sons at each specific 
parity. The PPRs were consistently higher among currently married women who had only daughters at all parities as 
compared to those who had only sons or both sons and daughters in NFHS-3 (2005-06) as well as NFHS-4 (2015-16) 
irrespective of the place of residence. The pace of progressions differs substantially between urban and rural areas. 
Greater parental preference for sons over daughters has been observed in rural areas as compared to urban areas at all 
parties in 2015-16. A comprehensive family welfare behaviour change communication packages are required to counsel 
couples that both daughters and sons, are equally important and valuable, and emphasize the slogan “BETI Bachao, 
BETI Padhao” against the prevailing perception in India. 

Keywords: Son preferences, PPR, Birth History, Life table, and NFHS. 

1. Introduction 
Preferences for sons over daughters are deep routed in Indian societies [1-3]. Many studies have shown that married 
couples keep childbearing on until they achieve the desired number of sons which results in adding up additional births 
[4-7].  Studies have also shown that biologically, only 26% of married couples fulfill their desire for two sons after two 
births and around 10% of married couples are unable to achieve their desire for two sons ever after having six children 
[3, 5, 8]. Such preferences for sons over daughters have many implications on the social and demographic structure of 
the population; it has a direct impact on population growth and sex ratio at birth [3, 5, 9-11] and is positively associated 
with the desire for more children and thereby the total fertility rate. Also, it is negatively associated with contraceptive 
uses which resulted in higher fertility rates delaying the demographic transitions in India [3, 12-14]. However, evidence 
suggests that gender preferences have declined and a moderate preference for a daughter has been noted in India [3, 4]. 
This declining trend in sex preference might be due to the influence of education, urbanization, exposure to mass media, 
rapid economic growth, and a rise in women’s status [3, 9]. It again varies in levels with respect to the geographical, 
social, and economic status of couples [15-16]. There are a few studies that explored the relationship between the son's 
desire, the sex ratio of living children in the family, contraceptive uses, and intended fertility [9-10, 17-18]. There are 
attempts to analyze the relationship between the sex composition of living children and realized fertility using parity 
progression ratios in India [3, 11, 19]. In the present study, we examined the impact of preferences for sons over 
daughters on fertility in India by examining parity progression ratios at different parities by the sex composition of 
children and women’s urban-rural residence over a decade between 2005-2006 and 2015-16. The choice of examining 
parity progression ratios (PPRs) over the conventional measures of fertility is to study step-by-step incremental aspects 
of family building process. It encapsulates the contingent nature of fertility behavior including the decision when to 
have the next child and family size in terms of the number of children. Relative contributions of gender preferences at 
different birth orders/parity to overall family size are well explained within the parity progression ratio framework.  

2. Objectives 

The specific objective of the study is to estimate and compare the impact of son preferences over daughters on the 

family-building process in India using the parity progression ratios. 
3. Materials and Methods  
3.1 Data 
The complete birth history data of currently married women aged 40-49 years are used to examine the effects of son 
preferences on the parity progressions ratios. The Birth history data was extracted from the third & fourth rounds of 
Indian National Family Health Survey (NFHS) [15-16] conducted during the periods of 2005-2006 and 2015-16 across 
the country. NFHS is a nationally representative household survey and provides information on a wide range of 
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indicators on health, diseases, nutrition, and demographics along with the birth history data. In these surveys, all women 
aged 15-49 years present at the household at the time of the survey were interviewed irrespective of their marital status 
(i.e., ever married and never married). Uniform sampling design was used across the country, to ensure comparability 
and maintain the highest data quality. In NFHS-3, a two-stage sampling method in rural areas and a three-stage 
sampling method in urban areas were adopted to select the sampling units, however, in NFHS-4, a two-stage sampling 
method is employed at both urban-rural areas. It is worth mentioning that NFHS-3 had state representative sample while 
NFHS-4 was designed to provide estimates of certain RCH-related service indicators at the district level and outcome 
indicators at the state level [15-16].  In analysis, national women’s weights derived and provided in the NFHS data are 
used in the analysis to maintain the representativeness of the samples. 

3.2 Inclusion and Exclusion Criteria 
In the analysis, we have included those currently married women who have given birth to at least one child and 
completed their childbearing process and excluded from the analysis to those currently married women who were 
married more than once and had multiple births (twins or more) at any parity to control the displacement of date of 
births and the variations arose due to different marriages, marital status and sex-composition of children. Women who 
married before the age of 10 years and had child births before the age of 13 years, and had premarital births are also 
excluded from the analysis. To progress from any specific parity or birth to the next parity/birth, women must have 
their next birth within 10 years of the preceding birth. In the sample, around 18,309 currently married women aged 
40-49 years from NFHS-3 and around 1,19,065 currently married women (CMW) aged between 40 -49 years from 
NFHS-4 have satisfied the inclusion and exclusion criteria and included in the analysis. These CMWs from NFHS-3 
and NFHS-4 respectively had 65,996 and 3,69,522 live births.  

3.3 Study Variables 
3.3.1 Dependent Variable 

Parity progression ratios (PPRs) at each parity are the main study variable and have been used as a method to estimate 
the propensity of subsequent childbearing after having specific-combination of the number of children assessing the 
impact of son-preferences over daughters. The parity progression ratio describes the family-building process by 
considering the incremental aspect of childbearing. It describes that out of women with the specific parity or birth order, 
how many will move to the next child.  

In analysis, PPRs are estimated at parity 1 (p1), parity 2 (p2), parity 3 (p3), and parity 4 (p4) representing the progression 
from first to second birth, second to third birth, third to fourth birth and fourth to fifth births. The choice of these four 
parity transitions is governed by the intention to look at the effect of preferences for sons on parity transitions during 
which a considerable proportion of married women have already achieved their desired sex composition and desired 
family size, in order that the estimated effects of the son-preferences on parity progressions would be relatively large 
and straightforward to spot and, it might be of interest to policymakers and program managers. 

3.3.2 Independent Variables 

Fourteen predictor variables as the combination of number of sons and parity are created as: parity 1 (0 or 1 son), parity 

2 (0, 1 or 2 sons), parity 3 (0, 1, 2, or 3 sons), and parity 4 (0, 1, 2, 3 or 4 sons). The number of sons refers to all 

possible combinations of sons and daughters at a given parity. The other independent variable included in the analysis 

by which the effects of son-preferences are examined is the urban-rural place of residence.  
3.4 Methods 
3.4.1 Estimation of Parity Progression Ratios (PPRs) 

Kaplan-Meier life table approach is employed to estimate the parity progression ratios at each parity by the number of 
sons using the birth history of currently married women in the sample. Parity-specific life tables are constructed by 
pooling the closed and open birth intervals of specific birth orders for all parities up-to 5th order births or beyond [4, 
20-21]. Each life table is truncated at 10 years with the assumption that after 10 years of each birth, the probability of 
the next birth is negligible [4, 20-21].  

It is assumed that the minimum parity progression ratios would prevail at a specific parity if the currently married 
women would not have any son preferences over daughters at that parity. Let us assume that CMWi is the actual number 
of currently married women with parity ith and min(pi) is the minimum parity progression ratio at ith parity, where i=1, 2, 
3, 4. Then, under the assumption of minimum parity progression in the absence of gender preferences, the number of 
currently married women at the start of (i+1)th parity is calculated as follows: 
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Hence, the number of additional child births attributed by (i+1)th parity due to son-preferences over daughter, is equal to 
{CMWi+1 –Est(CMWi+1)}, where, CMWi+1 is the actual number of the currently married women at the starting of (i+1)th 
parity; and Est(CMWi+1) is the estimated number of the currently married women at the starting of (i+1)th parity. The 
approach is earlier employed by Chaudhuri S., 2012 [3]. 

4. Results 
4.1 Sample Distribution 
There were 18, 309 CMW in NFHS-3 (2005-06) and 1,19,065 CMW in NFHS-4 (2015-16) aged 40-49 years who 
satisfied the inclusion and exclusion criteria and were included in the analysis. In NFHS-3, around 34% lived in urban 
areas and 66% CMW lived in rural areas, however, in NFHS-4, around 36% lived in urban areas and 64% lived in rural 
areas.    

4.2 Currently Married Women by the number of sons in 2005-2006 and 2015-16 
Table 1 shows the percentage distribution of CMW aged 40-49 years by the number of sons by place of residence in 
NFHS-3 (2005-06) and NFHS-4 (2015-16).In NFHS-3, among women with parity 1, around 47% did not have any son 
and 53% had one son. Among women with parity 2, around 23% had no son and 25% had one son. By place of 
residence, in urban areas, 24% have no son, 26% have one son and in rural areas around 22% CMW have no son and 25% 
have only one son. At parity 3, only 13% CMW in urban areas and 12% CMW in rural areas had no sons, and 25% in 
urban areas and 28% in rural areas had 3 sons. Among CMW who had 4 children, only 8% have no son in urban areas 
and 6% have no son in rural areas.  The majority of CMW (47% in urban areas and 49% in rural areas) have 2 sons 
and around one-fourth have 3 sons at both places. In the 2015-16 cohort of CMW, at parity 1, around 46% CMW do not 
have any sons and 54% of CMW have one son. The percentages of CMW with no son in urban and rural areas are 45% 
and 46% respectively. At parity 2, around 22% have no son, and 25% have only one son while in urban areas, 21% have 
no son, 26% have one son and in rural areas around 22% CMW have no son and 25% have only one son. At parity 3, 
around 48% CMW have 2 sons. Only 24% CMW in urban areas and 26% CMW in rural areas have 3 sons and around 
11% CMW have no sons in urban areas as well as in rural areas. Among CMW who have 4 children, only 8% have no 
son in urban areas and 7% CMW have no son in rural areas. The majority of CMW (48%) have 2 sons, around 24% 
have 3 sons at both places, around 10%CMW in urban areas and 12% CMW in rural areas have 4 sons at parity 4. 

4.3 Differentials in Parity Progression Ratios (PPRs) by the Number of Sons  
Table 2 presents the differentials in PPRs by the number of sons at different parities in NFHS-3 (2005-06) & NFHS-4 
(2015-16) cohorts. In 2005-06, at first parity transition, the percentage of going on to second birth (p1) is 95% for CMW 
who have first birth but have no son and it is 94% for CMW who have first birth and have one son. At parity 2, the 
value of p2 is higher for CMW who had no son (88%) as compared to those who have 1 son (78%) and 2 sons (77%). 
Among CMW who have third-order births, the PPRs are around 86% for those who have no son, 71% for those who 
have only one son, 70% for those who have 2 sons, and 65% for those who have 3 sons. At parity 4, the values of p4 are 
substantially lower for CMW who have sons than those who have no son at all; the percentage of going on to fifth order 
birth is 85% for CMW who have no sons, 66% for those who have one son, 64% for those who have 2 sons, 60% those 
who have 3 sons and 64% for those who have 4 sons.  In 2015-16, among CMW who had their first birth, the 
percentage of going on to second parity is 93% among CMW who have no son as compared to 89% CMW with one son. 
Whereas, at parity 2, around 81% CMW who have no son would progress to parity 3 as compared to 58% CMW who 
had 1 son, and 55% CMW who have 2 sons, respectively. At parity 3, the conditional probability for progression from 
3rd to 4th order births is 81% among CMW who have no son, 52% among those who have 1 son, 53% among those 
who have 2 sons, and 46% among those who have 3 sons. At parity 4, the likelihood of progressions from 4th order to 
5th order births is around 81% among those CMW who have no son, 54% among those who have 1 and 2 sons, 44% 
among those who have 3 sons, and 52% among those who have 4 sons. 

4.4 Impact of Son-Preferences on the Family Building Process 
Table 2 also shows the impact of son-preferences on parity progressions at different parity by 2005-06 and 2015-16 
cohorts. In the 2005-06 cohort, under the assumption of the minimum parity progression in the absence of 
son-preferences, around 94% CMW would like to progress to parity 2 from parity 1; 77% would like to progress from 
parity 2 to parity 3; 65% would like to progress to parity 4 from parity 3 and 60% would like to progress to parity 5 
from parity 4. By this approach, around 1% less birth at parity 2; 4% less birth at parity 3; 8% less birth at parity 4, and 
7% less birth at parity 5 would occur. Overall, around 63,959 births would occur by the parity 5 which is 2,040 births 
fewer than the observed total 65, 996 births by parity 5 which indicates that around 3% additional births are attributed to 
parity 5 in 2005-2006 cohorts due to son-preferences. However, among the 2015-16 cohort, under the assumption of 
minimum parity progression at a parity and absence of son desire at that parity, around 89% CMW would like to 
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progress from parity 1 to parity 2; 55% would like to progress to parity 3 from parity 2; 46% CMW would like to move 
from parity 3 to parity 4 and 44% CMW would like to progress to parity 5 from parity 4 which induced 3% fewer births 
at parity 2; 18% fewer births at parity 3; 21% fewer births at parity 4 and parity 5. By this approach, around 3, 38,132 
childbirths would have occurred by parity 5 which is 31,390 lesser than the observed total live births of 3,69,522 by 
parity 5 in the study sample which indicates around 8% additional births are attributed due to son preferences over 
daughter by parity 5 in 2015-16. The above analysis clearly shows that the trends in progressions by the number of sons 
are same in the both cohorts. The CMW who have no sons have substantially higher progressions at all parities than 
those who have one or more sons or sons and daughters in both cohorts. Though the parity progressions are consistently 
higher among CMW from 2005-2006 than CMW from 2015-16 at all parities, a higher proportion of additional births 
are taking place among CMW from 2015-16 than CMW from 2005-2006 due to son-preferences.  

4.5 Differentials in PPRs by Number of Sons and the Place of Residence in 2005-06 
Table 3 shows the differentials in estimated PPRs by the number of sons and the place of residence for the 2005-2006 
cohort. Urban-rural variations in the PPRs by the number of sons have been seen at all parities. In urban areas, PPR is 
slightly lower for CMW who have one son than those who have no son at parity 1. The percentage of going on to 
second birth is 90% for CMW who have one son and 92% for those who have no son at parity 1. Among CMW who 
had second births, the PPR is substantially lower among CMW who have 2 sons or one son than those who have no 
sons; the values of PPRs are 82%, 67%, and 66% respectively for those who had no sons, one son, and 2 sons. At parity 
3, the percentage of going on to fourth birth is 79% for those who have no son, 58% for those who have one son, 61% 
for those who have 2 sons, and 55% for those who have 3 sons. At parity 4, around 86% CMW who had no son are 
progressed to fifth-order birth whereas the parity progressions to the next parity among CMW who had one son, 2 sons, 
3 sons, and 4 sons are around 52%, 52%, 48%, and 60% respectively. However, in rural areas, the PPRs at parity 1 are 
around 97% for CMW who have no son and 95% for CMW who have one son. At parity 2, among CMW who had 2 
births, the likelihood of progressions to third birth is 91% for CMW who have no son, 84% for those who have one son, 
and 82% for those who have 2 sons. The PPRs at parity 3 are 89% for those who have no son, 78% for CMW who have 
one son, 73% for those who have 2 sons, and 68% for those who have 3 sons. Among CMW who had 4 births, around 
85% CMW who had no son would like to progress to fifth birth, whereas, the percentage of going on to fifth birth is 71% 
for CMW who have one son, 68% for those who have 2 sons, 64% those who have 3 sons, and 65% those who have 4 
sons. The pattern and trend in the parity progressions by the number of sons at different parity are same in both the 
place of residence.  

4.6 Impact of Son-Preferences on Family Building Process by the Place of Residence in 2005-06 
Table 3 also shows the estimated impact of son preferences on the family building process by urban-rural residence in 
2005-2006.In urban areas, under the assumption of minimum progression in the absence of son-preferences, around 90% 
CMW would like to move from parity 1 to parity 2; 66% from parity 2 to parity 3; 55% from parity 3 to parity 4, and 48% 
from parity 4 to parity 5 which come about a 2% less childbirth at parity 2; 7% less childbirth at parity 3; 11% 
childbirth at parity 4 and 13% less childbirth at parity 5. Overall, around 119,201 childbirths would occur by parity 5 as 
against the actual 20,035 childbirths by parity 5. It indicates that around 4% of additional births are attributed to parity 5 
due to preferences for sons over daughters in urban areas in 2005-2006 in India. However, in rural areas among CMW 
from 2005-2006, if there are no gender preferences and minimum parity progression prevails at each parity then around 
95% CMW would like to progress to parity 2 from parity 1; 82% would like to move from parity 2 to parity 3; 68% 
would like to move from parity 3 to parity 4 and 64% would move to parity 5 from parity 4. By this approach, around 2% 
fewer child births at parity 2; 4% fewer child births at parity 3; 9% fewer child births at parity 4, and 6% fewer child 
births at parity 5 will occur in rural areas. Overall, around 3% of additional births are attributed to son preferences in 
rural areas in 2005-2006. The analysis clearly shows that the preferences for sons are stronger in urban areas than 
in rural areas in 2005-2006 in India. 

4.7 Differentials in Parity Progression Ratios (PPRs) by the Number of Sons and the Place of Residence in 2015-16 
Table 4 shows the differentials in estimated PPRs by the number of sons and the place of residence for the 2015-16 
cohort of CMW. Urban-rural differentials in the percentages of going on to the next parity at different parities by the 
number of sons exist and increase with increasing parity in 2015-16. In urban areas, around 89% CMW who have no 
son have progressed to second-order birth from first birth whereas around 84% CMW who have one son have moved to 
second-order birth at parity 1. Among CMW who have two births, the PPRs are 70%, 45%, and 44%, respectively for 
CMW who have no son, one son, and two sons. At parity 3, around 72% CMW who have no son have progressed to 
the next higher order birth, as compared to 40% CMW who have one son, 44% CMW who have 2 sons, and 39% CMW 
who have 3 sons. At parity 4, around 74% CMW who have no son progress to fifth order birth whereas the parity 
progressions to next parity among CMW who have one son, two sons, three sons, and four sons are around 45%, 46%, 
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39%, and 48% respectively. However, in rural areas, PPRs at parity 1 are 95% for CMW who have no son and 92% for 
CMW who have one son. At parity 2, among CMW who have two births, the percentages of going on to third birth are 
86% for CMW who have no son, 64% for CMW who have one son, and 60% for those who have 2 sons. The PPRs at 
parity 3 are 85% for CMW who have no son, 57% for CMW who have one son, 56% for CMW who have two sons, and 
49% for CMW who have three sons. At parity 4, around 84% CMW who have no son have progressed to fifth-order 
birth, whereas, 56% CMW who have one son, 56% CMW who have two sons, 45% CMW who have three sons, and 53% 
CMW who have four sons have progressed to next order parity (table 4). The above findings clearly indicate that PPR 
among CMW who have no sons are consistently higher at all parities than those who have one or more sons or sons and 
daughters both, in both places of residence. The levels of progressions are quite high in rural areas than in urban areas at 
all parities. 

4.8 Impact of Son-Preferences on Family Building Process by the place of Residence in 2015-16 
Table 4 also shows the estimated impact of son preferences at different parities by urban-rural residence in 2015-16 in 
India. In urban areas, under the assumption of no gender preferences, around 84% CMW would like to progress from 
parity 1 to parity 2; 44% would like to progress from parity 2 to parity 3; 39% would like to progress from parity 3 to 
parity 4 and 39% from parity 4 to parity 5. By this approach, around 4% less childbirth at parity 2, 20% less childbirth 
at parity 3, 19% fewer childbirths at parity 4, and 20% less childbirth at parity 5 will occur in urban areas in 2015-16. 
Overall, around 1,08,196 births would occur by parity 5 as against the observed 1,16,703 births by parity 5 in urban 
areas. In other words, around 7% additional births are attributed to son preferences in urban areas among CMW aged 
40-49 years in India in 2015-16 (table 4). However, in rural areas, under the assumption of no gender preferences, the 
minimum parity progressions at parity 1, 2, 3, and 4 would be 92%, 60%, 49%, and 45% respectively, which come 
about to a 3% less childbirth at parity 2, 19% less childbirth at parity 3, 22% less childbirth at parity 4 and 22% less 
childbirth at parity 5 will occur in rural areas. Overall, there would be around 2,29,438 births as against the observed 
total 2,52,819 births by parity 5 in rural areas. It means around 9% additional births are attributed by parity 5 due to the 
preferences for sons in rural areas among CMW aged 40-49 years in 2015-16 in India (table 4). A substantial proportion 
of additional childbirths are taking place in both urban and rural areas, but it is stronger in rural areas as compared to 
urban areas in 2015-16 in India. 

5. Discussion and Conclusions 
The foregoing analysis echoed the preferences for sons over daughters have been influencing the fertility behavior and 
family building process in India at all parties. The PPRs are consistently higher among those who have only daughters 
at all parties in comparison to those who have only sons or both sons and daughters (male and female children) in 
2005-06 as well as in 2015-16. In other words, those who have no sons are more prone to continue their childbearing 
process till they achieve their desired number of sons which is consistent with findings of prior research in India [3, 4, 
13].The results conform to the established norm that preferences for sons over daughters are a significant motivational 
factor for the continuous childbearing process among married couples in India [1, 3, 4] and abroad as well. Many 
couples continue the childbearing process to have sons even after having the desired family size which results in adding 
up more additional births and a slow pace of fertility declines [3, 4, 11]. However, at higher parity, the progression is 
quite high among CMW who have only 4 sons than CMW who have 1 daughter or 2 daughters in the study samples 
(2005-06 & 2015-16), which confirms earlier findings [4, 13] which found that though in India the parental preferences 
for sons over daughters are higher, but parents do want one or more daughters correlating it with the Hindu customs of 
Kanydaan (rituals of giving away a daughter in marriage). The results based on PPR model clearly show that 
sons-preferences over daughters have added a good proportion of additional children at all parity. The trends in 
progressions by the number of sons are same in the both cohorts. The CMW who have no sons have substantially higher 
progressions at all parity than those who have one or more sons or sons and daughters in both cohorts. Though the 
parity progressions are consistently higher among CMW from 2005-2006 than CMW from 2015-16 at all parities, a 
higher proportion of additional births due to gender preferences have taken place in 2015-16 than 2005-2006 at all 
parities. It may be due to differences in the sample sizes in 2005-2006 and 2015-16. It may also be that most of 
the progressions among CMW from 2005-2006 are not due to son preferences. The gender preferences have added 
around 1% additional childbirths at parity 2, 4% additional childbirths at parity 3, 8% additional childbirths at parity 4, 
and 7% additional childbirths at parity 5 in 2005-2006, whereas, around 3% additional childbirths at parity 2; 18% 
additional childbirths at parity 3; 21% additional childbirths at parity 4 and 21% additional childbirths at parity 5 have 
added-up in 2015-16 in India. Overall, the gender preferences have added around 8% additional births by parity 5 in 
2015-16 as compared to 3% in 2005-06 in India. It indicates that the gender preferences have substantially increased at 
all parity between 2005-06 to 2015-16 in India. Though urban-rural differentials exist in gender preferences in India, 
however, the pace of transitions is different in urban areas as compared to rural areas. A high parental preference for 
sons over daughters has been observed in the rural areas at all parties in 2015-16, however, the preferences for sons are 
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stronger in urban areas than rural areas in 2005-06 in India. The PPRs are lower among CMW who live in the urban 
areas and had atleast one daughter and among CMW who has one daughter in the rural areas in 2005-06 and 2015-16. 
The results based on PPR model clearly show that sons-preferences over daughters have added a good proportion of 
additional children at both the place of residence in both cohorts. Around 4% additional childbirths in urban areas and 3% 
additional childbirths in rural areas have been attributed by parity 5 due to parental preferences for sons over daughters 
in 2005-06. However, in 2015-16, around 7% additional childbirths in urban areas and 9% additional childbirths in rural 
areas were attributed due to son preferences among CMW aged 40-49 years in India. This shows that the gender 
preferences for sons are stronger in rural areas than urban areas in 2015-16 whereas in 2005-2006, the preferences for 
sons over daughters are stronger in urban areas than rural areas. As preferences for sons over daughters appear to be a 
significant determinant and motivational factor for the continuous childbearing process, comprehensive family welfare 
behaviour change communication packages are required to counsel couples that both daughters and sons, are equally 
important and valuable. It further needs to emphasize the slogan of “BETI Bachao, BETI Padhao” to reduce the 
prevailing perception. 
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Table 1. Number and Percentage Distribution of Currently Married Women (CMW) aged 40-49 years at each specific 
Parity by Number of Sons they had and Urban-Rural Place of Residence, India, NFHS-3 (2005-2006) and NFHS-4 
(2014-15), India 

Parity/ 
No. of Sons/ 
No. of CMW 

NFHS-3 NFHS-4 
Urban Rural All Urban Rural All 

Parity 1 6285 12024 18309 43,236 75,829 1,19,065 
0 Son 49% 47% 47% 45% 46% 46% 
1 Son 51% 53% 53% 55% 54% 54% 
Parity 2 5,771 11,650 17,421 37,770 71,599 1,09,369 
0 Son 24% 22% 23% 21% 22% 22% 
1 Son 26% 25% 25% 26% 25% 25% 
2 Son 51% 53% 52% 53% 53% 53% 
Parity 3 4074 9903 13977 20,805 52,997 73,802 
0 Son 13% 12% 12% 11% 12% 12% 
1 Son 15% 13% 13% 16% 14% 15% 
2 Sons 48% 48% 48% 49% 48% 48% 
3 Sons 25% 28% 27% 24% 26% 25% 
Parity 4 2,520 7,377 9,896 10,023 33,152 43,175 
0 Son 8% 6% 7% 8% 7% 8% 
1 Son 9% 8% 8% 9% 9% 9% 
2 Sons 47% 49% 48% 48% 48% 48% 
3 Sons 25% 25% 25% 24% 24% 24% 
4 Sons 11% 12% 12% 10% 12% 11% 

Table 2 Number of Currently Married Women aged 40-49 years, Parity Progression Ratios, and Number of currently  

married women who would have continued childbearing if the minimum parity progression ratios prevailed at all parity 

by NFHS-3 & NFHS-4, India 

Parity/Number 
of Sons 

NFHS-3 NFHS-4 

No. of 
CMW at 

the start of 
Parity 

 PPR 
(%) 

No. of 
CMW if 

Minimum 
PPR 

prevailed 

No. of 
CMW at 
the start 
of Parity 

  
PPR(%) 

No. of 
CMW if 

Minimum 
PPR 

prevailed 
Parity 1 18,309  18,309 1,19,065  1,19,065 
0 Son  95%   93%  
1 Son  94%   89%  
Parity 2 17,421  17,210 1,09,369  1,05,968 
0 Son  88%   81%  
1 Son  78%   58%  
2 Sons  77%   55%  
Parity 3 13,977  13,414 73,802  60,153 
0 Son  86%   81%  
1 Son  71%   52%  
2 Sons  70%   53%  
3 Sons  65%   46%  
Parity 4 9,896  9,085 43,175  33,949 
0 Son  85%   81%  
1 Son  66%   54%  
2 Sons  64%   54%  
3 Sons  60%   44%  
4 Sons  64%   52%  
Parity 5 6,393  5,938 24,112  18,997 
 
Total    65,996    63,956 

  
3,69,522    3,38,132 
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Table 3. Number of Currently Married Women aged 40-49 years, Parity Progression Ratios and Number of currently 

married women who would have continued childbearing if the minimum parity progression ratios prevailed at all parity 

by Place of Residence, India, NFHS-3, 2005-06 

Parity/Number 
of Sons 

Urban Rural 

No. of 
CMW at 
starting 
of Parity 

 PPR 
(%) 

No. of 
CMW if 

Minimum 
PPR 

prevailed 

No. of 
CMW at 
starting 
of Parity 

PPR (%) 

No. of 
CMW if 

Minimum 
PPR 

prevailed 
Parity 1 6,285   6,285 12,024   12,024 

0 Son  92%     97%   

1 Son  90%     95%   

Parity 2 5,771  5,657 11,650  11,423 

0 Son  82%     91%   

1 Son  67%     84%   

2 Sons  66%     82%   

Parity 3 4,074  3,809 9,903  9,553 

0 Son  79%     89%   

1 Son  58%     78%   

2 Sons  61%     73%   

3 Sons  55%     68%   

Parity 4 2,520  2,241 7,377  6,734 

0 Son  86%     85%   

1 Son  52%     71%   

2 Sons  52%     68%   

3 Sons  48%     64%   

4 Sons  60%     65%   

Parity 5 1,385  1210 5,009  4,721 

Total 20,035   19,201 45,962   44,455 
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Table 4. Number of Currently Married Women aged 40-49 years, Parity Progression Ratios, and Number of currently 
married women who would have continued childbearing if the minimum parity progression ratios prevailed at all parity 
by Woman's Place of Residence, India, NFHS-4, 2015-16 

Parity/Number 
of Sons 

Urban Rural 

No. of 
CMW at 
starting 
of Parity 

PPR 
(%) 

No. of 
CMW if 
Minimum 
PPR 
prevailed 

No. of 
CMW at 
starting 
of Parity 

PPR 
(%) 

No. of 
CMW if 
Minimum 
PPR 
prevailed 

Parity 1 43,236  43,236 75,829  75,829 

0 Son  89%   95%  

1 Son  84%   92%  

Parity 2 37,770  36,318 71,599  69,763 

0 Son  70%   86%  

1 Son  45%   64%  

2 Sons  44%   60%  

Parity 3 20,805  15,980 52,997  42,959 

0 Son  72%   85%  

1 Son  40%   57%  

2 Sons  44%   56%  

3 Sons  39%   49%  

Parity 4 10,023  8,114 33,152  25,969 

0 Son  74%   84%  

1 Son  45%   56%  

2 Sons  46%   56%  

3 Sons  39%   45%  

4 Sons  48%   53%  

Parity 5 4,871  3,909 19,241  14,918 

Total 1,16,703  1,08,196 2,52,819  2,29,438 
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Probability of Ultimate Ruin for the Log Normal Distribution and the 
Computation of Some of its Related Actuarial Quantities with Real Data 

Applications 

 

Abstract 
The chapter illustrates the application of the Log Normal distribution as an actuarial risk model. Here, more emphasis 
has been on the computational features of some of the key actuarial numbers, such as the minutes of time to ruin and the 
likelihood of final ruin when the underlying claim severity distribution is log normal. The classical risk model does not 
accommodate the case when there is an interest rate and tax payment acting upon the surplus process. In this chapter, 
the probability of ultimate ruin in the presence of interest rates and tax payments is also being evaluated for the case 
when the claim severity is distributed as Log Normal. The implementation of the algorithms aimed at evaluating these 
quantities presents computational challenges with associated sources of error. The quantities thus obtained are found to 
be exhibiting trends which are logical and consistent in terms of actual functioning of an insurance company. The 
parameters of the Log Normal distribution are estimated from a set of real- life insurance claim data. 

Keywords: Loss Modelling, Stable Recursive Algorithm, Time to ruin, Surplus process under Interest rate and tax 
payments 

1. Introduction 
In a general insurance portfolio, two quantities of interest are the number of claims arriving in a particular period of 
time and the amount of each claim. We model the uncertainty in these quantities by random variables; specifically, a 
counting distribution is used to model the claim arrival pattern whereas a continuous distribution is used to model the 
claim severity. Loss modeling is a vital component of Mathematical modeling in general insurance since as specified in 
[1], in the most general sense, all of Actuarial science is about loss distribution modelling. Loss modelling is considered 
to be one of the most important aspects of risk modelling for it constitutes the basis, on which depends the accuracy of 
various other actuarial quantities related to the long-term solvency of the insurance company. 

Log Normal distribution is a right skewed heavy tailed distribution which often arises as a potential model for modeling 
the claim severity. However, the drawback of the Log Normal distribution is that its Laplace transformation and hence 
its moment generating function does not have a closed form expression. Moreover, even its cumulative distribution 
function does not have a closed form expression. Log Normal distribution is a heavy tailed distribution i.e. it has 
relatively high probabilities in the right hand tail. The applications of the Log Normal distribution are commonly found 
in a variety of fields-Physics, Reliability theory, Biology, Economics, to name a few. There is enough evidence on the 
use of this distribution in property/casualty insurance to model claim sizes ([2].[3]) 

A good introduction to the subject of fitting distribution to losses is given in [2]. Other references on this subject include 
[1] and [3]. A typical characteristic of the claim data arising in the general insurance sector is that it is skewed to the 
right and hence heavy tailed distributions like Lognormal, Weibull, and others are considered to be potentially good 
candidates for modelling such data. However, as stated in [4] there is still no adequate framework confirming which 
class of distributions is appropriate to which category of insurance.  

Based on our broad objective of illustrating the application of Log Normal distribution as an Actuarial risk model, we 
present the following objectives for our current work: 

a) To fit the Log Normal distribution to a set of Insurance claim data. 

b) To compute the probability of ultimate ruin for the Log Normal distribution using the stable recursive 
algorithm.  

c) To compute the first two moments of the time to ruin for the fitted Log Normal distribution. 

d) To compute the probability of ultimate ruin for the Log Normal distribution under the presence of interest 
earnings and tax payments. 

The second section of the chapter is devoted to methodology which is again sub-divided into a few subsections, first sub 
section deals with fitting the Log Normal distribution whereas the second sub section deals with the classical risk model. 
The stable recursive algorithm for computing the probability of ultimate ruin is presented in the third sub section. The 
moments of the time to ruin for the Log Normal distribution is dealt with in the fourth sub section. The fifth subsection's 
content focuses on calculating the likelihood of ultimate ruin when interest and taxes are paid. The chapter's third 
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section covers the findings and discussions, while the fourth and last section focus on the conclusion. 

2. Methodology 
2.1 Fitting of the Log Normal Distribution: 
The probability density function of the Log Normal distribution is given by 

 

The cumulative distribution function (cdf) of the Log normal distribution is given by 

 

where  is the cdf of the standard Normal distribution. 

The  raw moment of the Log normal distribution is given by 

 

The maximum likelihood estimators of the parameters are given by 

 

2.2 The Classical Risk Model 
Let  denote the surplus process of an insurer as 

 
where  is the initial surplus,  is the rate of premium income per unit time and  is the aggregate claim 
process and we have   where  is a homogeneous Poisson process with parameter ,  
denotes the amount of the ith claim and  is a sequence of iid random variables with a distribution function  
such that  and probability density function  We denote  by . Also, we have 

, where  is the security loading factor. [5], [6], [7] 

Let  denote the time to ruin from initial surplus  so that  and define  
 and Pr (  is known as the ultimate ruin probability 

whereas   is the finite time ruin probability. A detailed discussion on the Classical Risk model and the 
probability of ruin can be found in ([1],[8],[9],[10])The classical Risk model is the base for many mathematical models 
in insurance mathematics, but it is formulated with many simplifying criteria which make it deviate to some extent, 
from the actual picture observed in the insurance scenario. Some other computational techniques and related concepts 
on probability of ultimate ruin can be found in ([11], [12]). 

2.3 A Stable Recursive Algorithm for the Evaluation of the Ultimate Ruin Probabilities: 
The probability of ruin can be obtained as the solution of an integro differential equation [13]. A stable recursive 
algorithm implements a recursive algorithm to solve this integro differential equation for the Probability of ultimate ruin. 
It basically targets at yielding solution for the convolution part of the integro differential equation and in the process, 
produces an estimate of the probability of the ultimate ruin by finding the average of the bounds (lower and upper 
bounds) of this probability. Since the algorithm does not lead to the propagation of error, therefore it is stable and also, 
it produces bounds within a prescribed tolerance level.[14] 

The following integral equation must be solved in order to compute the infinite time ruin probability numerically, as 

derived in [13]. 

where, 
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Let 

 

An interested reader is recommended to refer to ([14], [6], and [7]) for a detailed description on the algorithm.  
Following is an outline of the steps to be carried out for implementing the stable recursive algorithm [14]. 

 

where “n” the number of intervals and is chosen to be sufficiently large. 

 

then  for every  and  for every , since  is a decreasing function of  

As given in [[14], [5], [6]], the upper bound to the probability of ultimate ruin is given by 

And the lower bound to the probability of ultimate ruin is given by 

with 

where  and are respectively the lower bound and upper bound to the approximation for  at the 
 iteration. 

 can be approximated by 

An upper bound to the error of estimation is given by 

For a discussion on the stability of this algorithm, one can refer to [14]. For the implementation of this algorithm, we 
need to compute the function  for the Log Normal distribution which is as follows 

Computing the function  for the Log Normal Distribution 

 

Hence  

 

where 
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and 

 

This integral has to be computed numerically. 

2.3 Moments of the Time to Ruin 
The moments of the time to ruin are another set of important quantities which are invariably related to the probability of 
ruin. An insight into the average time to ruin and the intensity of ruin can be deduced based on these quantities. Closed 
form expressions for the distribution of the time to ruin don’t exist for most of the claim severity distributions except for 
Exponential, Mixture of Exponentials, and the Erlang group of distributions (15).  Hence, numerical computation of 
the moments of the time to ruin is the only viable method for all other distributions. 

Two non–negative random variables in connection to the time to ruin are the surplus just prior to the time of ruin and 
the deficit at the time of ruin. While the former is denoted by , where  is the left-hand limit of , the deficit 
at the time of ruin  is denoted by  ([5]. [7],[16]). 

A theme of significant focus in Actuarial Science is the expected discounted penalty function denoted by  and 
defined as 

where  and  otherwise. 

Here,  is a non negative function and  is interpreted as the force of interest. The 
quantity   can be interpreted as the penalty at the time of ruin. For the special case when  
and ,  reduces to , the probability of ultimate ruin when initial surplus is “  since 

. For a further understanding on the moments of the time to ruin and the expected discounted 
penalty function, one can refer to [17], [18]. 

The reference [19] shows that the function  satisfies the following defective renewal equation 

 

where  is the unique non-negative solution of the equation 

 
and  denotes the Laplace transform of the function  

The results of [20] lack mathematical tractability for their practical implementation and this problem is solved in [21] 
which simplified the results of [20] to make them mathematically tractable for numerical computation and have used 
them to calculate the approximate values for the moments of the time to ruin when explicit solutions for the probability 
of ultimate ruin do not exist. In their numerical computations, values of  have been calculated from the stable 
algorithms described in [[22], [5]].    
The reference [20] shows that the  moment of the distribution of the time to ruin is given by 

where 

Let be the maximum of the aggregate loss process so that (  (see[23], formula (13.6.2)). 

In [13], it has been shown that  

 

 appearing in [20] has been simplified in [21] as 
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where,  can be evaluated numerically in the absence of any explicit form of expression for  

Similarly,  appearing in [20], has been simplified in [21], and the simplified form is given by 

 

As has been indicated earlier, explicit expressions for the moments of the time to ruin can’t be obtained owing to the 
lack of analytical ways for solving the integrals appearing in Eq. (22) and Eq. (23), the exception being in the cases of 
Mixture of Exponential distribution and Erlang group of distributions. For any distribution barring these, the integrals 
can be evaluated only numerically. Due to the non-explicit form of [21], the method of numerical integration has been 
used, and the values of  is obtained through a stable recursive algorithm mentioned in section (2.3). 

2.5 Probability of Ruin in the Presence of Interest Earnings and Tax Payments 
The classical risk model excludes the influence of interest earnings and tax payments on the surplus process but under 
the influence of these factors that is interest earnings and tax payments, the surplus process exhibits some interesting 
properties and consequently, a modified approach to compute the probability of ruin under these influences is required. 
Albrecher- Hipp tax identity (see [24], [25]) is an important result in this context where the modified surplus at a time  
is denoted by  and this modified surplus carries within it a component of tax, paid at a fixed rate  whenever the 
insurer is in a profitable position. 

In the context of this modification let  and  respectively denote the ruin and non ruin probabilities. 
The following result from [26] has been used to compute the probability of ultimate ruin in the presence of interest 
earnings and tax payments. We assume that the claim size distribution  and its equilibrium distribution are both 
sub exponential and , where  is defined in eq (4.1) of [26].  It can be noted that all these 
assumptions are true for log normal distribution. Under this setup, the probability of ultimate ruin is given by 

 

In practical situations, the choice of investment made by the insurance company determines the interest rate  and 
fiscal policies of the country concerned governs the tax rate . However, with an objective to simplify, we have taken 
the tax structure as given in [26] for our computation and  is fixed at a level of  

The tax structure used is  

 

The following is the computation of the probability of ruin [5,6] for a lognormal distribution under interest earnings and 
tax payments.  

Here, we have 

 

Therefore, 

 

Changing the scale, we have 
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where,  

 

The above integral has been computed numerically 

All the computations are done through R programming [27]. 

3. Results and Discussions 
Data: Our data consists of a collection of 160000 claim amounts that were collected from an Indian general insurance 
company's motor insurance portfolio, which included all of its Indian branches, during the course of six months, from 
April 2013 to September 2013. No adjustment is made for inflation for the time horizon is narrow. It needs to be 
mentioned that the data is utilized more for the illustration of the various methodologies rather than for the extraction of 
any concrete meaningful conclusion from the data itself. Since the inter arrival time of the claim is difficult to track, an 
illustrative value of the intensity parameter is taken as . 

Summary statistics shown in Table 1 as well as the graphical display shown in Figure 1, indicate the existence of a high 
degree of positive skewness in the data and this in turn is indicative of the fact that Log Normal could be a potential 
model for the data. 

Table 1. Summary Statistics for the Insurance claim data [5] 

Sample 

Size 

Mean Standard 

deviation 

Min 25% 

Quantile 

Median 75% 

Quantile 

Max Skewness Kurtosis 

160000 1.78834e+04 22805.81 523 6043.00 10583.00 19374.25 188209 3.576628 18.94972 

 

Figure 1. Histogram of the observed claim data on motor insurance 

The parameter estimates of the Log Normal distribution have been found as  and 
However, the Log Normal distribution could not qualify the goodness of fit tests by means of two 

EDF(Empirical Distribution Function) statistics which we are being used, namely the Cramer Von Mises (the value is 
found to be 70.57441 with p-value<0.05) and Anderson Darling tests (The value of this statistic is found to be 484.3411 
with p-value<0.05). However, in conjunction with the real objectives of this work, we have retained these estimated 
values for the parameters of the Log Normal distribution. These estimated values are then, used as the values of the 
parameters of the Log Normal for computing the various actuarial quantities under consideration.  

Table 2 shows the probability of ultimate ruin for the Log Normal distribution obtained through the stable recursive 
algorithm with an illustrative value of security loading factor as  These values are found to be decreasing with 
an increase in the initial surplus and this is consistent with its expected behaviour since a larger initial surplus should 
diminish the chance of ruin, if any. The greatest advantage of the stable recursive algorithm is that it is fast, accurate, 
stable and produces the bounds to the error of estimation for the probability of ultimate ruin. The greatest challenge of 
this method lies in computing the function  which implies integrating the equilibrium distribution of the Log 
Normal which has no closed form and the problem is compounded by the fact that even the distribution function of the 
Log Normal distribution does not have a closed form expression. Hence, the emergence of error from these two sources 
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has contributed to the overall error in the evaluation of the probability of ruin by the stable recursive algorithm. 

Table 2. The probability of ultimate ruin for the Log Normal distribution fitted to our set of insurance data (
 and  ) computed through the stable recursive algorithm 

Initial 
Surplus 
( ) 

Lower bound to the 
probability of ultimate 
ruin 

Upper bound to the 
probability of ultimate 
ruin 

Probability of 
ultimate Ruin 
( ) 

10 0.7691278 0.7691278 0.7691278 

20 0.7690248 0.7690248 0.7690248 

30 0.7689218 0.7689218 0.7689218 

40 0.7688187 0.7688187 0.7688187 

50 0.7687155 0.7687155 0.7687155 

60 0.7686123 0.7686124 0.7686124 

70 0.7685091 0.7685091 0.7685091 

80 0.7684058 0.7684059 0.7684058 

90 0.7683025 0.7683025 0.7683025 

100 0.7681991 0.7681992 0.7681992 

200 0.7671628 0.7671630 0.7671629 

500 0.7640260 0.7640275 0.7640268 

1000 0.7587123 0.7587182 0.7587152 

Table 3 shows the first moment of the time to ruin for our fitted Log Normal distribution and it is found to be increasing 
with an increase in the initial surplus. This trend is obvious, for with the increase in the initial surplus, the time to ruin 
should get delayed.  An interpretation of a typical value in Table 3 is that starting with an initial surplus of Rs 100, it 
would on an average take.0.1216053 years for the surplus process to be less than or equal to zero for the first time, 
thereby leading to ruin in the sense of its definition. 

Table 3. The first moment of the time to Ruin for the Log Normal distribution fitted to our set of insurance data with an 
illustrative value for the intensity parameter as =32.427 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 4 shows the second moment of the time to ruin. It is also found to be increasing with an increase in the initial 
surplus. We have not gone to the extent of identifying the cause behind this increase in heterogeneity in the time to ruin, 
with an increase in the initial surplus. However, it is also a fact there is no intuitive assumption regarding the behaviour 
of the second moment of the time to ruin. 

Initial 
Surplus 

(  

First moment 
(Mean in years) 

10 0.1210953 

20 0.1211518 

30 0.1212084 

40 0.1212649 

50 0.1213215 

60 0.1213782 

70 0.1214349 

80 0.1214917 

90 0.1215484 

100 0.1216053 
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Table 4. Second moment of the time to Ruin for the Log Normal distribution fitted to our set of insurance data with 
intensity parameter λ=32.427 

Initial Surplus 
(  

Second  Moment 

10 0.1437515 

20 0.1438315 

30 0.1439116 

40 0.1439913 

50 0.1440715 

It needs to be noted that the first moment of the time to ruin is computed using Eq.(22) and Eq. (23) and the 
quantities  and  appearing therein, are computed through the stable recursive algorithm as described in 
section (2.3). The execution procedure for the computation of the second moment is rather more complex for it amounts 
to simultaneous handling of three numerical computations in a nested order aimed at the evaluation of ,  
and then finally . This gives rise to several issues pertaining to the occurrence of error and the overall execution 
time. Suitable adjustments are made in the interval of discretization in the numerical integration which in our case is 
Simpson’s  rule for numerical integration. The steep increase in the execution time with an increase in the value of 
initial surplus ( )constraints us to limit the values of  to relatively small amounts.  

Table 5 shows the probability of ruin in the presence of interest rates and taxes for the Log Normal distribution and it is 
found to be decreasing with an increase in the initial surplus and this is consistent with its expected behaviour. An 
occurrence of some amount of error is inevitable owing to the numerical integration being carried out to evaluate the 
integral in Eq. (27). We have used the integrate function in R to evaluate these integrals and the error accumulated is not 
more than 1e-15. 

Table 5. The probability of ultimate ruin for Log Normal Distribution fitted to our set of insurance data under the tax 
structure given by Eq. (25) and rate of interest =0.05 

Value of the initial surplus  (in Rs)  
10 0.8548930 

20 0.8543974 

30 0.8539018 

40 0.8534062 

50 0.8529106 

60 0.8524150 

70 0.8519194 

80 0.8514239 

90 0.8509283 

100 0.8504327 

200 0.8494415 

500 0.8479547 

1000 0.8058814 
It is found that the net impact of interest earnings and tax payments is positive; that is, the probability of ultimate ruin 
under the presence of interest earnings and tax payments is found to be increasing as compared to that obtained in the 
absence of these two factors. It further needs to be mentioned that the interest rate used is also purely illustrative and the 
tax structure is taken from [26], although the tax structure prevalent in India during the time, the data was collected 
would have been more realistic. 

4. Concluding Remarks 
We have computed the probability of ultimate ruin when the underlying claim severity is distributed as Log Normal 
distribution. Apart from it, we have dealt with the computation of another important actuarial quantity namely the 
moments of the time to ruin for this claim severity distribution. An important aspect of this work has been to reassess 
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the Probability of ultimate ruin in the presence of interest rates and tax payments. Each of the computed quantities has 
its importance in assessing the operational dimension of an insurance company. The computations are constrained by 
technical difficulties including the limited capacity of a personal computer. The work focuses on the difficulty of 
handling multidimensional integrals where the integrand itself does not have a closed form expression and is to be 
computed numerically through algorithms which are themselves loaded with several challenges. The algorithms that 
have been used can serve to provide guidance in constructing their improved versions with some consolidated effort to 
quantify the error associated with the computation and to minimize it.  
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A Note on the Discrete Analogue of the Pearsonian System of Curves 

 
Abstract 
Frequency distributions are the arrangement of statistics to show the number of times or frequency with which, an event 
occurs in a particular way. A generalized System of Curves is important as it describes frequency distributions for as 
wide a variety of observed distributions as possible. One of these systems that became the most successful was the 
Pearsonian System of Curves in 1850. The discrete analogue of the Pearsonian System of Curves was first discussed in 
1967 by J.K.Ord, where the difference equation employed to define the class of distributions was based on four 
parameters. This distribution was the basis of many important studies. However, there exists some discrepancies in the 
values of the parameters as observed in this study. Considering the importance of the distribution, the present paper 
gives a detail of the errors and corrected values of the parameters. Some discussion on the resultant value of kuppa (the 
parameter determining the ‘type’ of the distribution) and the complete distribution in the system has been added too. 
Further studies based on this distribution may follow the corrected values of the parameters. 

Keywords: Pearsonian System of Curves, discrete case, J.K.Ord, correction 

1. Introduction 
The Pearson system of continuous distribution is defined by the differential equation  

          (1) 

where f(x) is the density function when the random variable X=x and a,b0,b1,b2 are parameters. This system provides a 
framework for discussing several important continuous distributions. Its utility has been exponentiated time to time 
[1-2]. 

Analogously, it was derived by [3] that we may employ the difference equation 

         (2) 

to define a class of discrete distributions, based on a lattice of unit width (without loss of generality). This system was 
studied earlier to Ord by [4-5] and a special case by [6-7].  

The moments relation was found for the distribution (2) by multiplying throughout by 

      (3) 

and summing over [u,v], the range of r, the factorial moments about the origin,  satisfy the relation 

     (4) 

for  

where  

   (5) 
and 

 
The calculations of the parameters of the difference equation done by Ord were followed and few discrepancies were 
noted. The corrected values are detailed as follows: 

The complete distributions may be taken to have the range [0, N] where N may be infinite or . If the range is 

i) Doubly infinite; or 

ii) Has , lower terminal zero and has when N is finite 

 

Then is zero for all j. 

Calculation of parameters 
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Case I: Discrete with range [0, N] 
Considering the specifications, we proceed as follows: 

Putting  in (4) 

 

         (6) 

Next putting  in (4), we get 

 

         (7) 

Again putting  in (4), we get 

 

        (8) 

Table (Table 1) of compares values of the parameters (in terms of the first three (or four) moments is given below: 

Table 1. Comparison of values of parameter of discrete PSC for range [0, N] 

Parameter By Ord Corrected 
   

   

 
  

 
  

where 

  

and  

  

Case II: Discrete with range  
Here, we consider , for the result of making is to change the origin of the system to the mean of the 
distribution. 

Putting  in equation (4), we get  

 

           (9) 

Putting  in equation (4), we get  

 

        (10) 

Putting  in equation (4), we get  

 

       (11) 

Putting  in equation (4), we get  
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(12) 
Now from equation (9) we get 

          (13) 
From equation (10) we get   

         (14) 
From equation (11) we get 

 

         (15) 

From equation (12) we get 

 

 

Given,  ,  and  

The above equation can be written as 

         (16) 

Putting value of  in equation (15), we get 

 

         (17) 

Putting value of  in equation (14), we get 

 

          (18) 

The results obtained in this case are found to tally with the results obtained by Ord, except a possible typing mistake of 
“/”. The comparison of the results is shown in Table 2. 
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Table 2. Comparison of values of parameter of discrete PSC for range  

Parameter By Ord Corrected 
 

 
 

 
 

 

   

 
 

 

where 

 

Distributions contained in the system 
The alternative form of equation (2) can be written as  

         (19) 

The form of the density function will depend on the behavior of the roots of the denominator in equation (2). We may 
use this behavior to distinguish different forms for the continuous distributions.  

Given,  , we get   

 , based on equation                 (19) 

Ord defined 1 as the index of dispersion by  and also uses . 

Using these two measures, the corrected values of kappa for the two ranges (based on the corrected values of the four 
parameters) are as follows: 

i) Range [0,N] 

 

ii) Range  

 

The complete distributions in the system, obtained by [8], are summarized in Table 3, along with their density functions 
and  values, where relevant. The type numbers associated with each distribution correspond, as far as possible, to 
those of the analogous Pearson curve; the letter c(d) being written after the type number to distinguish the continuous 
(discrete) form. 
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Table 3. Distributions contained in the system with range, density function and criteria values 
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Measuring Speed of Aging Process: An Illustration with the Population of 
Bangladesh 

 
Abstract 
The conventional aging measures are crude as these are silent on the demographic components of population change. 
This chapter is an exercise to improve the speed of aging measures as a function of the demographic components that 
are responsible for population growth. The measures of aging acceleration, used here, are functional relationship 
between life table mortality and fertility rate under the assumption of stable population. These are tested with the 
existing measures of aging velocity using census data of Bangladeshi population for the census years 1981 and 2001. 
The results show that these are good alternative and consistent measures over the existing methods. These alternative 
approaches indicate a slower aging process than those obtained by the existing measures. The gender and urban-rural 
gap in the rising aging process is noticeable for Bangladeshi population. Therefore, a consideration of both the existing 
and proposed modified measures of pace of demographic aging will be helpful for assessing the process precisely. 

Keywords: Population aging, pace of aging, measures of aging process, Population of Bangladesh 

1. Introduction 
Population aging from a demographic point of view is a natural process, generated by demographic transitions. It is not 
a demographic crisis, it mirrors a general trend of human development aimed at achieving longevity and wellbeing. On 
the contrary, population aging poses long-term challenges to society. Therefore, demographic aging should be rated as 
one of the most important processes in developed countries and even worldwide. 

Over the 20th century, the population of Bangladesh was young and at the dawn of the 21st century, its population has 
entered into the intermediate level of aging. The age structure of Bangladeshi population is changing markedly. A small 
proportion (over 6 percent) of the total population constitutes the elderly population, but the absolute number of them is 
quite significant (7.9 million) and by the year 2050 elderly share will be 16 percent of the total population (1). This 
change in the population characteristics will have serious consequences on society as well as on the overall 
socio-economic development of the country. 

In recent years, in response to an increasing concern in the developed world with the rapid increase in the aging of 
populations, there has occurred a great expansion in the literature trying to measure the population aging, forecast trends 
and analysis of socio-economic implications. Yet, despite this great proliferation the existing measures of aging 
continue to be crude (2). The population size, growth, structure and aging all are influenced by the demographic 
components of fertility, mortality, and migration. The conventional aging measures are crude as these are silent on these 
components. Measuring aging as a function of demographic components of population change is an attempt to improve 
these crude measures. This work is an exercise to improve such type of measures. The work of Preston, Himes and 
Eggers (1989) was a milestone on such type of measures (3). Liao (1996) suggested such measures of aging as a 
function of crude birth rate (CBR), crude death rate (CDR) and migration rate (4). Some improved measures have been 
proposed by several authors (5–7). Here an attempt has been made to modify the measures of aging velocity as a 
function of demographic components. The basic idea of these measures is to use the stable population fertility (adjusted 
with NRR and population growth) and life table mortality. In this study, life table death rate has been used as an 
alternative to the crude death rate and the net reproduction rate (NRR) has been used as an alternative to the birth rate 
respectively. All the measures have been applied to the Bangladesh census population of 1981 and 2001 to measure the 
speed of aging process and a comparison is made among these measures. 

2. Methods of the Study 
2.1 Existing Measures 
2.1.1 Aging measure given by Preston, Himes and Eggers (1989) 

The rate of change of mean age in terms of birth and death rates per unit of time as  

                  (1) 

where Ap is the mean age of the population, AD is the mean age at death, b (t) is the birth rate of the population at time t 
(number of births per person-year lived), d (t) is the death rate of the population at time t (number of births per 
person-year lived). 
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2.1.2 Aging Measures Given by Liao (1996) 

On the basis of the rate of change of mean age (3), Liao (1996) proposed the rate of change of the remaining four 
common measures of aging (4). For closed population, these are: 

i) Rate of change in the proportion of persons age 60 and over at time t (P60): 

                   (2) 

where, N(t): size of the total population at time t. 

d60(t): corresponding death rate of the sub-population aged 60 and over. 

a60(t): rate of new members added to sub-population aged 60 and over. 

ii) Rate of change in the proportion of persons aged below 15 at time t (P15): 

         (3) 

where, a15(t): members of the age group aging out of the group at time t. 

d15(t): biological death rate in that age group (below 15) at time t. 

b15(t): new birth added to the age group at time t. 

iii) Rate of change in the aged-child ratio at time t: 

           (4) 

iv) Rate of change in the Median age at time t: 

Liao (1996) conceptualized as the rate of change in the proportion aged median and below at time t (4), dPMd(t)/dt and 
the expression is 

          (5) 

under usual notations. 

2.2 Modified Measures 
Demographic measure varies among different sub-populations (age, sex, region, education level, economic status, 
marital status, etc.). Nath and Deka (2006) suggested a few improved aging indices considering birth and death rates for 
male, female, and male-female simultaneously (5). Here an attempt has been made to expand these measures with 
respect to the region (urban and rural) and sex specific alternative birth rates, the birth rate under the assumption of 
stable population, [b(t)*] and life expectancies [ex(t)] i.e., death rate under the assumption of the stationary population 
(reciprocal to the life expectancy). The indices presented here are for a closed population. 

2.2.1 Measures Related to Proportion of Aged 60 and Above (P60) 

i)                  (6) 

ii)  

                (7) 

This measure considers simultaneous effects of overall male-female birth and life expectancies. 

iii)  

+                (8) 

This measure considers simultaneous effects of urban-rural birth and life expectancies. 
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The superscripts u, R, m and f stand for urban, rural, male and female respectively. 

2.2.2 Measures related to proportion of age below 15 (P15) 

i)                (9) 

ii)  

                    (10) 

This measure considers the simultaneous effects of overall male-female birth and life expectancies. 

iii)  +  

+               (11) 

This measure considers simultaneous effects of urban-rural birth and life expectancies. 

2.2.3 Measures Related to Aged-Child Ratio(R) 

i)             (12) 

ii)  

+                        (13) 

This measure considers the simultaneous effects of overall male-female birth and life expectancies. 

iii) +  

+  +                       (14) 

This measure considers simultaneous effects of urban-rural birth and life expectancies. 

2.2.4 Measures related to Median age (Md) 

i)            (15) 

and 

                                   (16) 

ii) +  

                               (17) 

This measure considers the simultaneous effects of overall male-female birth and life expectancies. 

iii) +  

+            (18) 

This measure considers the simultaneous effects of urban-rural birth and life expectancies. 
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2.2.5 Measures Related to Mean age (Ap) 

i)                     (19) 

ii) +   

(20) 
This measure considers the simultaneous effects of overall male-female birth and life expectancies. 

iii) 

+   (21) 

This measure considers the simultaneous effects of urban-rural birth and life expectancies. 

2.3 Calculation of alternative Birth Rates 

Alternative birth rates b(t)* have been calculated from its functional relationship with NRR, r, and T. The relation is 

stated below: 

A fundamental equation of population dynamics is  

                                         (22) 

In which r(t) is the “instantaneous” per capita growth rate, b(t) is the per capita birth rate, and d (t) is the per capita 

death rate at time t. 

Bertran and Murray (1997) proposed the following relationship (8): 

                                   (23) 

Here we use,  

                                          (24) 

which is known as the life table death rate.                                                

Now we need to find out the value of r(t), intrinsic rate at time t. For this, we use the following approximation (9):  

                                         (25) 
Where NRR is the net reproduction rate, r is the intrinsic growth rate and T is the mean length of generation.  

Again, T is very close to the average age of childbearing of the female population for the stationary population (10). 
Here T is assumed as average age of childbearing of female population and this is calculated from age-specific fertility 
rate of Bangladesh female population. Therefore, 

                                          (26) 

Therefore, the alternative birth rate b(t)* has been calculated from equation (23) after putting the value of er(t) from 
equation (26) and d(t) from equation (24). 

After calculating b(t)* for the nation, urban, and rural areas we have computed the sex specific birth rate adjusting with 
sex ratio at birth. Similarly age specific birth rate, for example, birth rate for persons under fifteen and persons aged at 
or below the median, which is not actually a demographic birth rate but used for calculating the rate of change of aging 
measures. 

3. Materials of the Study 
The measures discussed above have been applied to the Bangladeshi population for the census years 1981 and 2001 (11). 
Various demographic rates have also been collected from other Bangladesh Bureau of Statistics (2003) publication (12). 
Sex specific birth rates have been calculated using the sex ratio at birth. Age specific death rates and the average age at 
death have been computed from the distribution of age specific death rates by age, sex, and locality respectively for the 
years 1981 and 2001. Normally various rates are expressed in terms of per 100 or per 1000 populations. However, for 
ease of calculation, these rates are presented per unit population in our study.  
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4. Results and Discussions 
This study intends to measure the population aging as a function of alternative fertility and mortality measures given by 
Preston et al. (1989) and Liao (1997), of a person (3,4). The rate of change of conventional aging measures alternative 
to those of existing measures has been exercised to observe the greying process of Bangladeshi population for two 
census years 1981 and 2001. A comparison has been made among different formulae used here. We try to find out the 
best method of measuring the rate of change in the aging process with respect to demographic components. Here, all the 
measures have been calculated for the closed population of Bangladesh. Various alternative birth and other rates and life 
expectancies for 1981 and 2001 are presented in Table 1. 

Table 1. Alternative birth, death, and other rates of Bangladesh, 1981- 2001 

Year Locality Sex 
Life expectancy, alternative birth, and other rates 
b(t) e0 e60 bMd(t) b15(t) 

1981 
National 

Male 0.0210 55.30 16.20 0.0816 0.0879 
Female 0.0206 54.50 16.00 0.0852 0.0910 
Person 0.0417 54.80 16.10 0.0833 0.0894 

Urban Person 0.0268 60.30 17.80 0.0535 0.0641 
Rural Person 0.0432 54.30 16.00 0.0865 0.0911 

2001 
National 

Male 0.0121 64.00 16.14 0.0470 0.0487 
Female 0.0110 64.50 16.72 0.0456 0.0591 
Person 0.0232 64.20 16.44 0.0463 0.0589 

Urban Person 0.0065 66.40 18.07 0.0130 0.0190 
Rural Person 0.0281 63.20 16.97 0.0562 0.0687 

4.1 Aging Through Alternative Demographic Components 
In this study, the rate of change of various conventional aging measures has been computed with stable population birth 
and life table death rate of a person. These measures indicate per year change i.e., 1980-1981 and 2000-2001. The basic 
considerations of these formulae are: 

(a) First: Stable population birth and life table death rates of population.                                                   

(b) Second: Stable population birth and life table death rates for both male and female populations.                      

(c) Third: Stable population birth and life table death rates for both urban and rural populations. 

4.2 Aging Process of Bangladeshi Population 
Various alternative measures of the rate of change in the aging process of the Bangladeshi population for 1981 and 2001 
have been presented in Table 2. 

Table 2. National level alternative rate of change aging measures, 1981 - 2001 

Measures Year Person-1* Person-2** Person-3*** 

 
1981 - 0.00118 - 0.00105 - 0.00246 

2001 - 0.00042 - 0.00039 - 0.00046 

 
1981 - 0.02021 - 0.00988 - 0.01737 

2001 - 0.01604 - 0.01977 - 0.02916 

 
1981 0.00270 0.00265 0.00292 

2001 0.00529 0.00520 0.00584 

 
1981 0.00132 - 0.00705 - 0.01077 

2001 - 0.00835 - 0.01059 - 0.00992 

 
1981 - 0.05000 0.26000 0.40000 

2001 0.43000 0.55000 0.51000 

 
1981 - 0.50000 - 0.09000 - 0.74000 

2001 - 0.15000 0.23000 - 0.05000 
*Measures considering overall alternative birth rates and life expectancies. 
**Measures considering male-female alternative birth rates and life expectancies. 
***Measures considering urban-rural alternative birth rates and life expectancies. 
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The yearly change of proportion of persons aged 60 or more (P60) according to the first, second, and third formulae were 
-0.00118, -0.00105, and -0.00111 respectively in 1981. The corresponding figures were -0.00042, -0.00039, and 
-0.00046 respectively for the year 2001. All the measures show a declining peak aging process having a very slow pace 
in 1981 and in 2001 it is almost zero. Therefore, it can be said that the greying process of Bangladeshi population is 
more or less stable in 2001 according to the peak aging measures with alternative approaches. 

The rates of change of base aging in 1981 were -0.02021, -0.00988, and -0.0173 according to the four formulae under 
consideration. In 2001, the corresponding figures were -0.01604, -0.01977, and -0.00292 respectively. All the measures 
indicate a decreasing young population for both 1981 and 2001 with different magnitudes.  

The values of aged-child ratio (R) were 0.0027, 0.00265, and 0.00292 corresponding to three formulae in 1981. In 2001, 
the corresponding values were 0.00529, 0.00520, and 0.00584 respectively. All the formulae under consideration 
indicate more or less similar aging processes at both 1981 and 2001 where the aging process was faster in 2001 than 
that of 1981. 

Median age, a combined measure of aging, is popular for its non-parametric nature. Most of the measures show an 
increasing aging process in both 1981 and 2001 though the difference in magnitude among the various formulae of this 
process is mentionable. The increasing rate was significantly higher in 2001 than in 1981. According to the rate of 
change of the median age of the population (both existing and alternative), it is evident that the Bangladeshi population 
is becoming aged over time. 

The rate of change of mean age (Ap) with alternative measures gives somewhat confusing results because of the skewed 
distribution of population age. According to this measure, the aging process was faster in 2001 than that in 1981. 

With the above discussions on the alternative rate of change of conventional aging measures, we observe that all of 
them indicate an upward aging process of Bangladeshi population except for those on the peak aging as the population 
of Bangladesh is not mature enough yet. 

4.3 Gender Differences 
The rate of change of conventional aging measures at the national level with respect to sex for 1981 and 2001 has been 
presented in Table 3. 

Table 3. National level alternative measures with respect to sex, 1981 - 2001 

Measures 1981 2001 

Male Female Male Female 

 - 0.00115 - 0.00121 - 0.00054 - 0.00032 

 - 0.02179 - 0.01810 - 0.01682 - 0.01488 

 0.00371 0.00164 0.00556 0.00483 

 - 0.00867 - 0.00768 - 0.00588 - 0.01097 

 0.36000 0.30000 0.30000 0.58000 

 - 0.04000 - 0.03000 0.13000 0.14000 

It is observed that the aging process of Bangladesh with respect to sex is more or less stable in terms of the speed of 
peak aging measures with the alternative approaches. A clear base aging process with respect to sex in Bangladeshi 
population has been observed because of the successful family planning program of this country where male aging is 
faster than female aging. 

An alternative measure of velocity in the aged-child ratio with respect to sex also indicates an increasing aging process. 
This process is faster in 2001 than in 1981. 

The speed of changing median age with the alternative measure indicates an increasing aging process in Bangladesh 
with respect to sex. Female aging was faster (almost double) than that of males in 2001 though the picture was 
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the opposite in 1981. 

In 2001, we observed a positive aging process for the male and female population of Bangladesh with the modified 
measures of rate of change of mean age. The gender gap is not visible with these measures. From the rate of change of 
average age (median and mean), it can be said that both the male and female populations of Bangladesh are greying 
over time. 

4.4 Urban-Rural Differences 
Alternative rate of change of conventional aging measures for urban and rural populations have been presented in Table 
4. 

Table 4. Urban and rural level alternative measures, 1981 - 2001 

Measures Location 1981 2001 

Person-1* Person-2** Person-1* Person-2** 

 
Urban - 0.00016 0.00013 0.00103 0.00161 

Rural - 0.00130 - 0.00117 - 0.00073 - 0.00068 

 
Urban - 0.02069 - 0.02610 - 0.02226 - 0.04536 

Rural - 0.02056 - 0.00913 - 0.01493 - 0.01352 

 
Urban 0.00543 0.00544 0.01212 0.01261 

Rural 0.00251 0.00252 0.00406 0.00403 

 
Urban - 0.01353 - 0.01515 - 0.01882 - 0.02478 

Rural - 0.00766 - 0.00533 - 0.00776 - 0.00885 

 
Urban 0.66000 0.73000 0.84000 1.11000 

Rural 0.29000 0.20000 0.42000 0.48000 

 
Urban - 0.05000 0.33000 0.27000 0.63000 

Rural - 0.54000 0.13000 - 0.26000 0.12000 

*Measures considering overall alternative birth rates and life expectancies. 

**Measures considering rural and urban male-female alternative birth rates and life expectancies. 

A notable urban-rural gap has been observed in both 1981 and 2001. The urban old-age aging process was almost stable 
in 1981 whereas that of rural was somewhat decreasing. The trend of increasing peak aging process was observed in the 
period 1981-2001 for both urban and rural areas where the rural aging was almost stable and the urban aging was 
slightly up-warding.  

A mentionable urban-rural gap was found in the base aging process at 2001 according to the alternative measures where 
the urban aging was faster than that of rural though the gap between these two was negligible at 1981. The decreasing 
rate in the proportion of the urban young female population was faster than that of rural in 1981 but an opposite 
direction was found in the urban-rural male population. Both the urban young male and female populations decreasing 
rate was faster than that of rural in 2001. There is a huge gap between the results of the base aging in urban and rural 
areas with the alternative approaches in this analysis. This finding is an outcome of successful family planning 
programs in urban areas. 

An alternative measure of change in the speed of the aged-child ratio indicates a wide urban-rural gap in the aging 
process for both in 1981 and in 2001 where the urban aging was remarkably faster than that of rural. 

The per year increase in the median and mean age with the alternative measures show a wide urban-rural gap in the 
aging process in both 1981 and 2001 where a faster urban aging process than that of rural is mentionable. 

4.5 Comparison Between Alternative and Existing Measures 
A close look at the measures of Liao and Nath-Deka with their corresponding measures indicates the same direction of 
changing the aging process having different magnitudes (Table 5). Though the speed of the peak aging process is almost 
stable for both the existing and alternative Liao and Nath-Deka measures, alternative measures show a slightly faster 
aging process. Again, both the alternative approaches of Liao and Nath-Deka indicate a slow base aging process though 
the aging at base is increasing over the year for all the measures. 
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Table 5. Existing and alternative measures of speed of aging process 

Measures Year Liao Alternative to 

Liao 

Nath and 

Deka 

Alternative to 

Nath and Deka 

 
1981 - 0.00302 - 0.00118 - 0.00458 - 0.00105 

2001 - 0.00077 - 0.00042 - 0.00058 - 0.00039 

 
1981 - 0.02713 - 0.02021 - 0.02695 - 0.00988 

2001 - 0.02271 - 0.01604 - 0.03239 - 0.01977 

 
1981 0.00056 0.00270 0.00064 0.00265 

2001 0.00704 0.00529 0.00717 0.00520 

 
1981 - 0.00558 0.00132 - 0.01224 - 0.00705 

2001 - 0.01587 - 0.00835 - 0.01348 - 0.01059 

 
1981 0.21000 - 0.05000 0.46000 0.26000 

2001 0.82000 0.43000 0.70000 0.55000 

 
1981 - 0.13000 - 0.50000 0.13000 - 0.09000 

2001 0.36000 - 0.15000 0.08000 0.23000 

More speed of increasing aging process of Bangladeshi population has been found with alternative to Liao and 
Nath-Deka in 1981 in terms of the measure of the aged-child ratio. But a measure in 2001 reflects the opposite picture. 
Again, the alternative measures represent a slow pace of increasing median age in both 1981 and 2001. The measures 
regarding the rate of change of mean age of the population are confusing with all the measures (existing and alternative 
ones) because of skewed age distribution. Only the alternative measure of mean age to Nath-Deka gives a somewhat 
accepting result compared to the rate of change of median age for the year 2001. 

An empirical study finds that the yearly linear rate of change of aging at base, aged-child ratio and median age over the 
years 1981-2001 are -0.0036, 0.0017, and 0.22 respectively. The alternative measures have a narrow gap with these 
yearly rates of change compared to those measured with Liao and Nath-Deka’s approaches. So, we can claim that these 
are good alternative measures. Therefore, the use of both the measures, existing and alternative, will be helpful for 
a better understanding of the aging process. 

4.6 Comparison Among Alternative Indices 
We have proposed several alternative approaches to conventional aging measures in this chapter. These are 
the alternative index to Liao, the alternative index to Preston and Himes et al., the alternative index to Nath and Deka, 
alternative modified-1 index (this modification is based on the consideration discussed in ‘c’). The results are presented 
in Table 6. 

Table 6. Various alternative measures of Bangladesh population, 1981 - 2001 

Measures Year Liao Nath and Deka Modified-1* 

 
1981 - 0.00118 - 0.00105 - 0.00246 

2001 - 0.00042 - 0.00039 - 0.00046 

 
1981 - 0.02021 - 0.00988 - 0.01737 

2001 - 0.01604 - 0.01977 - 0.02916 

 
1981 0.00270 0.00265 0.00292 

2001 0.00529 0.00520 0.00584 

 
1981 0.00132 - 0.00705 - 0.01077 

2001 - 0.00835 - 0.01059 - 0.00992 

 
1981 - 0.05000 0.26000 0.40000 

2001 0.43000 0.55000 0.51000 

 
1981 - 0.50000 - 0.09000 - 0.74000 

2001 - 0.15000 0.23000 - 0.05000 
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*Measures considering urban-rural alternative birth rates and life expectancies.  

The entire alternative measures exhibit a slightly decreasing peak aging process in both 1981 and 2001 where the 
decreasing rate is almost negligible in the later year. The magnitudes of this process are more or less the same in 
alternative measures except for the alternative modified-1 index in 1981.  

Alternative measures of base aging show a different aging process among the formulae in both 1981 and 2001 though 
the direction (decreasing proportion of young) is the same for all the approaches. In 1981, the alternative to Nath and 
Deka’s formula showed a very slow decreasing rate while the alternative to Liao’s measure is close to each other and 
these slightly differ from the alternative modified-1 measure. The variations are poor among different alternative 
measures except for modified-1 in 2001.  

The speed of aging is faster with alternative modified-1 measures than those of Liao and Nath-Deka’s measure in both 
1981 and 2001 based on the rate of change of the aged-child ratio. All alternative measures based on the median age 
indicate an upward aging process in Bangladesh in both 1981 and 2001 except for the alternative to Liao’s method in 
1981. The alternative modified-1 measure shows a faster aging process than those of alternative to Liao and alternative 
to Nath-Deka’s measures in 1981. 

All other alternative measures of the rate of change of mean age (Preston et al., Nath-Deka, and modified-1) show a 
confusing aging process while alternative to Nath-Deka’s approach shows an acceptable aging process in 2001. From 
the results, it is clear that all the alternative measures show the same direction of Bangladeshi population aging except 
for the measures regarding the mean age. The modified-1 measure captures more clear pictures than other measures. 

5. Conclusions 
Rigorous and robust measures are indispensable for population aging research. Conventional aging measures are not 
consistent and they suffer from their limitations. This study is an effort to extend some measures of the speed of aging 
process and to assess the Bangladeshi aging process using them. Bangladesh is not an exception to the global 
phenomenon of demographic aging. It is a relatively new issue in the country as its demographic transition has entered 
into the third stage recently. Although it has not reached at an alarming stage yet, there should be no room for 
complacency. The country is now experiencing declining fertility and gradually improving mortality rates, especially in 
infant and maternal levels. The demographic transition represents a dynamic character of the country’s population age 
structure. From the analysis, it is found that these extended measures are good alternatives to existing measures of aging 
velocity and alternative approaches show the somewhat different pace of changing aging process. Our proposed 
modified-1 measure can be considered as the best one as it gives consistent results on the speed of aging with the 
majority of the conventional aging measures. Since the level of changing aging process is different among alternative 
measures hence it is recommended to consult all the measures carefully and to take a decision on the basis of the 
combined idea of these measures. So, the alternative measures will be helpful for a better understanding of the 
demographic aging process. This work also reveals that the Bangladeshi population is greying over time with a 
noticeable gender and urban-rural gap. The urban population is aging at faster pace than those of rural. The male 
demographic aging is faster than that of females in both 1981 and 2001. Therefore, this type of study on the population 
aging process of a nation will add some weight on taking sustainable aging policy. 
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Handling Non-Response in Presence of p(p≥2) Auxiliary Variables in Two 
Occasion Rotation Patterns 

 
Abstract 
The successive sampling is a well-known technique that can be used in longitudinal surveys to estimate population 
parameters. The present work is an attempt to develop imputation methods to reduce the impact of non-response at both 
the occasions in two-occasion successive (rotation) sampling. Utilizing the information on p (p ≥ 2) auxiliary variates, 
which are available at both occasions, estimators have been proposed for estimating the population mean at the current 
occasion. Behaviour of the proposed estimators is studied and the optimum replacement strategy is discussed in detail. 
To study the effectiveness of the suggested imputation methods are examined by comparing the performances of the 
proposed estimators in two different situations: with and without non-response. Empirical studies validate the results 
thus obtained. 

Keywords: Non-response, imputation, successive sampling, auxiliary character, chain-type, optimum replacement 
policy. 

1. Introduction 
By repeatedly sampling the same population over different periods and measuring the same study variables, surveys can 
track development over time. This approach, known as successive (or rotation) sampling, involves sampling across 
successive occasions—such as different years, seasons, or months—following a specific pattern and allowing for partial 
replacement of units. Successive (rotation) sampling is a robust method for obtaining reliable estimates at various time 
points. Key contributions to the theory of estimating population mean through successive (rotation) sampling have been 
made by Jessen [1], Sen [2-4], and Singh and Singh [5]. Furthermore, in many cases, additional information from an 
auxiliary variate is available at both the first and second occasions. Several estimators that utilize this auxiliary 
information to estimate the population mean at the current occasion have been proposed by researchers [6-12]. 

Non-response is a prevalent issue faced by survey researchers, and it tends to be more problematic in repeated surveys 
compared to single-occasion surveys. The patterns and causes of non-response or missing data can vary significantly. 
One effective method for addressing missing data is imputation, which involves filling in the missing values with 
reasonable estimates. This technique can simplify the analysis of incomplete datasets. Kalton et al. [13] have 
recommended various imputation methods designed to render incomplete data sets structurally complete and easier to 
analyse. Additionally, imputation can be enhanced using auxiliary variates [14, 15]. Ahmed et al. [16] and Singh [17] 
ave introduced several novel imputation techniques that leverage auxiliary variates for this purpose. 

The aim of the current study is to explore the impact of non-response across two occasions in successive (rotation) 
sampling. Singh and Karna [18] developed estimators for calculating the population mean at the current occasion while 
considering non-response at both occasions using imputation methods. This study proposes new imputation techniques 
that utilize information from p (where p≥2) auxiliary variates available at both occasions to address the non-response 
issue in two-occasion successive (rotation) sampling. The performance of these new estimators is evaluated under two 
scenarios: one with non-response and one without, and appropriate recommendations are provided 

2. Sample Designs on Two-Occasion 
Consider a finite population U = (U1, U2, - - -, UN) that has been sampled on two separate occasions. The variable of 
interest is denoted as x on the first occasion and y on the second occasion. It is assumed that there is a significant time 
gap between the two occasions, and at both times, information on p (a non-negative integer constant ≥ 2) auxiliary 
variables zj (j = 1, 2, - - -, p) is available with known population means. The presence of non-response at both occasions 
is also assumed. The pictorial representation of sampling design is given below: 
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 � (=m/n) and � (=u/n), given that � + � = 1, are the fractions of the matched and fresh sample, respectively, at 
the current occasion. For every unit i�Rk(k = 1, 2) the value xi (yi) is observed, but for the units i� c

kR (k = 1, 2) the 
values xi (yi)  are missing and instead, imputed values are derived. The mean imputation method is employed for the 
matched sample, while the imputation method for the unmatched sample utilizes p auxiliary variables zj available only 
during the current occasion. The following notations are defined for use in the subsequent sections:  

jX, Y, Z : Population means of the variates x, y and zj (j = 1, 2, - - p) respectively. 

n m m mj ux , y , x , z , y : Sample means of the respective variates  

1 2 2r r r jx , y , z : Mean of responses of the respective variates  

j jyx xz yzρ , ρ , ρ : Correlation coefficients between the variates. 

� � � �
j jyx yz yz 2b , b m , b r : Sample regression coefficient based on the sample sizes given in braces. 

� � � �
2N

- 12
x i

i = 1

S  = N -1 x - X� : The population mean square of the variate x. 

j

2 2
y zS , S : Population mean squares of the variates y and zj respectively.  

n
f = 

N
 

� �
� 	

: The sampling fraction. 

1 2
1 2

r r
f  = ,  f  = 

n u
 
  

� � � �
� 	 � 	

: Portions of respondents in the sample of sizes n and u respectively. 

t1 (= 1 – f1), t2 (= 1 – f2): Portions of non-respondents in the sample of sizes n and u respectively.  
3. Design of Estimator 
Consider two estimation designs for the population mean at the current occasion, employing inputs from p auxiliary 
variables zj (j = 1, 2, - - -, p). These estimators are developed to address non-response issues encountered at two 
sampling occasions. The initial estimator relies on a fresh sample, su, collected during the second occasion. For this 
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estimator, unavailable data points are imputed using a specific method proposed for handling the missing data at the 
current occasion. The imputation technique recommended for addressing missing data on the second occasion is 
described as follows:  

� � � � � �
2 j 2 2

i 2

p
c

r yz 2 j r j ij r j 2
j = 1 2

y                                                                         if i R

y  = u
y + b r Z  - z +z -z          if i  R

u - r

��
�

� �� �� ��
 !"

�
      (1) 

Following the above imputation procedures, the estimator for Y  based on fresh sample su at the current (second) 
occasion is given by 

 T1 =
ui  s

1
y

u �
�  =

c
2 2i  R i  R

1
y y

u � �

� �
�� �

� � !
� �  = � � � �

2 j 2

p

r yz 2 j r j
j = 1

y + b r Z  - z�    (2) 

where 
2

2

r i
i  R2

1
y = y

r �
� . 

The second estimator is based on a sample sm that is observed at each occasion and makes use of insights from the first 
occasion. Given that there are incomplete responses at the first occasion, the unrecorded data are imputed using the 
mean imputation method.  

As a result, the data, after imputation, is structured as follows: 

� � � � � �
1 j 1 1

i 1

p
c

r xz 1 j r j ij r j 1
j = 1 1

x                                                                       if i  R

x  = n
x + b r Z  - z +z -z          if i  R

n - r

��
�

� �� �� ��
 !"

�
   (3) 

By employing the imputation procedures presented, the estimator for a sample sn obtained during the first occasion is 
expressed as 

n

*
n

i  s

1
x x

n �

� �  = 
c

1 1i  R i  R

1
x x

n � �

� �
�� �

� � !
� �  = � � � �

1 j 1

p

r xz 1 j r j
j = 1

x + b r Z  - z�    (4) 

where 
1

1

r i
i  R1

1
x = x

r �
� . 

Therefore, the estimator of Y based on a sample sm (m= n�), which is common to each occasion and utilizes the above 
discussed imputation methods for imputing the unrecorded data at the first occasion are defined as: 

*
*m

2 n*
m

y
T  =   x

x
         (5) 

where � �
j

p
*
m m yz jm

j=1

y  = y + b (m) Z-z� , � �
j

p
*
m m yz jm

j=1

x  = x + b (m) Z-z�  

Considering the convex linear combination of estimators T1 and T2; the final estimator T for estimating the population 
mean Y  at the current (second) occasion is defined as: 

� �1 2T = φT  + 1 - φ T          (6) 

where φ is an unknown real constant to be determined by the minimization of the mean square error of the estimator T.  
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4. Behaviour of the Proposed Estimator 
The linear regression nature of both T1 and T2 implies that they are biased for Y , and hence, the estimator T, specified 
in equation (6) is also subject to the bias for Y . The bias B (.) and mean square error MSE (.) up-to the first order of 
approximations and for large population (ignoring fpc) are derived under large sample approximations using the 
following transformations: 

� �
2r 1y = Y 1 + e , � �m 2y = Y 1 + e , � �

1r 3x = X 1 + e , � �m 4x = X 1 + e , � �
1r j j 5jz = Z 1+ e , 

� �
2r j j 6jz = Z 1+ e , � �mj j 7jz = Z 1+ e , � � � �

j jyz 2 yz 8js r = S 1+ e ,  � � � �
j jyz yz 9js m = S 1+ e , 

� � � �
j jxz 1 xz 10js r = S 1+ e , � � � �

j jxz xz 11js m = S 1+ e , � � � �
j j

2 2
z 2 z 12js r = S 1+ e , � � � �

j j

2 2
z 1 z 13js r = S 1+ e , 

� � � �
j j

2 2
z z 14js m = S 1+ e . 

With the transformations applied, Tu and Tm assume the following forms: 

� � � �� �
p

-1

1 1 yzj j 6j 8j 12j
j = 1

T = Y 1 + e  - β  Z  e 1+ e 1+ e
� �
� �
 !

�           (7)

� � � � � � � � � �� �
p

-1-1 * *
2 2 yx 5 6 3 4 yzj j 10j 7j 8j

j = 1

T = Y 1+ e  + β X 1+e 1+e e - e - β  Z  e 1 + e 1 + e�     (8) 

We can thus formulate the following theorems from the discussion above: 

Theorem 4.1: The Bias(T) approximated up to the order O(n-1) in the estimation of Y , can be expressed as 

� � � � � � � �1 2B T  = φ B T + 1- φ B T          (9) 

where � �
p

012 003
1 yzj 2

j = 12 yzj zj

C C1
B T  = - β  - 

r S S

� � 
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� �� 	  !

�                 (10) 

and � �
p

* 012 003 300 210
2 yzj yx2 2

j = 1 yzj zj 1 x yx

C C C C1 1 1
B T  = - β  -  +  - β  -  

m S S m r S S

�� � � # 
 � �
�� � � $� �

� � � ��� 	 ! " % 
�  

     
p

201 003 102111
yx xzj 2 2

j = 1 yx x zj xzj

C C CC
β β  -  -  + 

S S S S

�� #� �� �� $
� ��" %!

�       (11) 

where � � � � � �tr s

rst i i ij jC = E x - X y - Y z - Z� �
� � !

; r ≥ 0, s ≥ 0, t ≥ 0, j = 1, 2, - - -, p. 

Proof: � �B T = E T- Y� � !  = � � � � � �1 2φ B T + 1- φ B T  

where � �1 1B T  = E T  - Y� � !  

= � � � �� �
p

-1

1 yzj j 9j 7j 8j
j = 1

E Y 1 + e  - β  Z  e 1+ e 1+ e - Y
� �
� �
 !

�  

Assuming 8je 1� , expanding the right-hand side of the above expression binomially, taking expectations, and collecting 
the terms up-to the order o(n-1), we have 
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p
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j = 12 yzj zj
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B T  = -  - β  - 

r N S S

� � 
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� �� 	  !

�                       (12) 

similarly  

� �2 2B T  = E T - Y� � !  

� � � �� � � � � �� �
p

-1-1 * *
2 yx 5 6 3 4 yzj j 10j 7j 8j

j = 1

= E Y 1+ e  + β X 1+e 1+e e - e - β  Z  e 1 + e 1 + e Y  
� �

�� �
 !

�  

Assuming 6 8je < 1 and e <1, expanding the right hand side of the above expression binomially, taking expectations and 
retaining the terms up-to the first order of approximations, we have 

� �
p

012 003 300 210
2 yzj yx2 2
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�                   (13) 

For sufficiently large populations, if the finite population correction is disregarded in equations (12) and (13), the bias 
of the estimators T, 1T  and 2T  approximated up-to the order o(n-1)  can be found in equations (9), (10), and (11).  

Theorem 4.2: The MSE (T) approximated up to the first-order in the estimation of Y , can be obtained as 

 � � � � � � � � � � � �22
1 2 1 2MSE T  = φ MSE T + 1- φ MSE T +2φ 1-φ Cov T , T        (14) 

where 

  � � 2
1 1 y
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                   (16) 

and 

� � � �� �
2

1 y
1 2 1 2

A S
Cov T , T  = E T -Y T -Y  =  -

N
� � !                          (17) 

where 

j j k j k

p p
2

1 yz yz yz z z
j = 1 j  k=1

A  = 1 - ρ + ρ ρ ρ
&

� �  

and 

j j k j k

p p
2

2 yx yz yz yz z z
j=1 j =1 

A  = 1-2ρ + ρ - ρ ρ ρ  � � . 

Proof: By the definition of mean square error, we have 

� � 2
MSE T  = E T - Y� � ! = � � � �� � 2

1 2E φ T - Y + 1- φ T - Y� � !  
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  = � � � � � � � � � �� �22
1 2 1 2φ MSE T + 1- φ MSE T  + 2φ 1- φ E T - Y T - Y� � !       (18) 

where  

� � 2

1 1MSE T  = E T  - Y� � !  and � � 2

2 2MSE T  = E T  - Y� � !  

Now, using the expressions given in equations (7) and (8), expanding binomially, taking expectations, taking 
expectations up to o(n-1), we have the expression of mean square error of the estimator Δas given in equation (14).  

Since mean square error of the estimator T defined in equation (14) is a function of the unknown constant φ , therefore, 
it is minimized with respect to φ  and subsequently the optimum value of φ  is obtained as  

� � � �
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2 1 2
opt.

1 2 1 2

MSE T Cov T , T
φ = 

MSE T  + MSE T 2Cov T , T

�
�

       (19) 

Substituting the optimum value opt.φ  in equation (14) we obtain the optimum mean square error of Tas 

� �
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� �

2

1 2 1 2

opt.
1 2 1 2

MSE T  . MSE T Cov T , T
MSE T =

MSE(T ) + MSE(T )-2Cov T , T

�
                (20) 

Further, substituting the values from equations (15), (16) and (17) in equation (20) yields the simplified value of 
opt.MSE(T)  as shown below in Theorem 4.3. 

Theorem 4.3: The opt.MSE(T) is derived as  

 � �
2

4 5 6 2
y2opt.

2 2 3 1 1

A μA +μ A
MSE T = S

n[μ f A +μA + f A ]

� �� !                   (21) 

where 

 � �3 1 2 1 2 1 1 2 2A = f f A +A - f A - f A , � � � �2
4 1 1 1 1 2A = f 1- f A + f - 1 A A , 

� � � �' (2
5 1 2 1 2 1 1 2A = ff 1- f A + ff 1- f +1 A A  and 6 2 1 2A = - ff A A  

In the context of equation (21), opt.MSE(T)  is a function of μ. Setting μ to 1 (representing no matching) is effective for 
estimating the population mean at single occasion, and setting μ to 0 (indicating full matching) is suitable for measuring 
changes over time. To design a strategy that is effective for both purposes, it is important to determine the optimal value 
for μ. 

5. Optimum Replacement Strategy 
In equation (21), MSE(T)opt is dependent on the fraction of new samples at the current survey occasion (μ), which plays 
a significant role in reducing survey costs. Therefore, it is important to minimize MSE(T)opt with respect to μ. The 
optimal value of μ, denoted μ0, is calculated as 

 
2

2 2 1 2
o

1

- Q  ? Q -Q Q
μ  = 

Q
                    (22) 

where 1 3 6 2 2 5Q =A A - f A A , 2 1 1 6 2 2 4Q = f A A - f A A  and 3 1 1 5 3 5Q = f A A - A A . 

For oμ to be a valid solution, it must satisfy 2
2 1 2Q - Q Q   0) . Admissibility of μmin. depends on the condition, 

min.0 μ 1� � , being met. By substituting the admissible value oμ  from equation (22) into equation (21), we get 

 � � *

2
4 o 5 o 6 2

y2opt.
o 2 2 o 3 1 1

A +μ A +μ A
MSE T = S

n[μ f A +μ A + f A ]

� � !         (23) 
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7. Efficiency Comparison 
In order to judge the effect of non-response on the precision of estimates under the two-occasion successive (rotation) 
sampling, the percent relative loss in efficiency of the estimator T has been obtained with respect to the estimator * . 
The estimator *  is defined under the same circumstances as of T but in the case of complete information (with no 
missing data). 

Consider the estimator *  of Y : 

� �1 2 = ψ  + 1 - ψ* * *            (24) 

where � �
p

1 u yzj j ju
j = 1

= y + b (u) Z  - z* � , 
*

*m
2 n*

m

y
 =   x

x
* , � �

p
*
m m yzj j jm

j = 1

y = y + b (m) Z  - z� , 

� �
p

*
n n xzj j jn

j = 1

x = x + b (n) Z  - z�  and � �
p

*
m m xzj j jm

j = 1

x = x + b (m) Z  - z� . 

ψ  is an unknown real constant to be determined by the minimization of the mean square error of the estimator* .  

The optimum mean square error of * following Sukhatme et al. [19] is given by 

 *

2
y1 2

1 2opt
1 2

SA +μA
M( )  = A -f

A +μ A n

� �
* � �

 !
         (25) 

where 1μ  is the admissible value of min.μ which is obtained as 

2
1 1 1 2

1
2

- A  ? A A A
μ  = 

A

�
         (26) 

Remark 1: The permissible value of 1μ in equation (26) is obtained in the similar manner as 0μ . 
The percent relative loss in precision of the estimators T with respect to the estimator *  under their respective 
optimality conditions are given by 

� � � �
� �

* *

*

opt. opt.

opt.

MSE T  - MSE
L =  ? 00

MSE T

*
 

7.1 Empirical Study 
The expressions of the minimum μ and the percent relative losses L are in terms of population correlation coefficients. 
Therefore, the values of minimum μ and L have been computed for different choices of positive correlations. For 
empirical studies few cases arise: 

Case 7.1.1: Assuming p = 1, the proposed estimator aligns with the specific estimator developed by Singh and Karna 
[18]. 

Case 7.1.2: when p = 2, the values A1 and A2 take the form as 2 2
1 1 2 1 2 z1z2A = 1- ρ - ρ + 2ρ ρ ρ  and � �2 2 2

2 yx 1 2 yxA  = 2ρ ρ + ρ - ρ  
where

1 1 2 2yz xz 1 yz xz 2ρ = ρ = ρ , and ρ = ρ = ρ . Using these we have the values of 0 1μ , μ and L for a range of correlation values 
displayed in Tables 1 and 2. 

Case 7.1.3: choosing p = 2, the values of A1 and A2 change as 
1 2 2 3 1 3

2 2 2
1 1 2 3 1 2 z z 2 3 z z 1 3 z zA = 1- ρ - ρ - ρ + 2ρ ρ ρ 2ρ ρ ρ 2ρ ρ ρ� � and 

� �2 2 2 2
2 yx 1 2 3 yxA  = 2ρ ρ + ρ  ρ - ρ�  where

1 1 2 2 3 3yz xz 1 yz xz 2 yz xz 3ρ = ρ = ρ , ρ = ρ = ρ , ρ = ρ = ρ . Again the values of 0 1μ , μ and L for 
a variety of correlation cases are outlined in Tables 3. 
8. Existence of M Under Various Values of µo and r1 
For a random value of r1 (the count of non-participants in the initial n sized sample) and optimum value of μo, it is 
obvious to verify the condition m ≤ r1. Table 4 illustrates the computed m values for different scenarios involving n, r1, 
μo and various correlations for the estimator T.  

Remark 2: “*” in the Tables 1 – 4 denotes that no admissible values for μ exist. 
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Table 1. Percentage of relative loss L in precision of T concerning * at permissible values of μ, when p = 2 and ρz1z2 = 
0.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

for t1 = 0.05 and t2 = 0.05 

ρyx 0.5 0.7 0.9 

ρ1 ρ2 μ0 μ1 L μ0 μ1 L μ0 μ1 L 

0.5 0.5 0.65 0.47 3.10 0.49 0.54 3.18 0.67 0.67 4.38 

0.7 0.57 0.46 2.73 0.44 0.52 2.91 0.65 0.66 4.28 

0.9 0.50 0.43 2.16 * - - 0.62 0.63 4.04 

0.7 0.5 0.57 0.46 2.73 0.44 0.52 2.91 0.66 0.66 4.28 

0.7 0.55 0.45 2.59 0.39 0.52 2.72 0.65 0.65 4.23 

0.9 0.50 0.43 2.20 * - - 0.62 0.63 4.05 

0.9 0.5 0.50 0.43 2.16 * - - 0.62 0.63 4.03 

0.7 0.50 0.43 2.20 * - - 0.62 0.63 4.05 

0.9 0.48 0.41 1.95 0.66 0.48 3.13 0.61 0.61 3.93 

 

For t1 = 0.05 and t2 = 0.15 

ρyx 0.5 0.7 0.9 

ρ1 ρ2 μ0 μ1 L μ0 μ1 L μ0 μ1 L 

0.5 0.5 * - - 0.33 0.54 7.44 0.63 0.67 9.91 

0.7 0.76 0.46 10.5 0.19 0.52 6.27 0.61 0.66 9.77 

0.9 0.59 0.43 9.08 * - - 0.57 0.63 9.40 

0.7 0.5 0.76 0.46 10.5 0.19 0.52 6.27 0.61 0.66 9.77 

0.7 0.71 0.45 10.1 0.05 0.52 5.13 0.61 0.65 9.69 

0.9 0.60 0.43 9.16 * - - 0.57 0.63 9.43 

0.9 0.5 0.59 0.43 9.08 * - - 0.57 0.63 9.40 

0.7 0.60 0.43 9.16 * - - 0.57 0.63 9.43 

0.9 0.56 0.41 8.72 * - - 0.55 0.61 9.23 

 

For t1 = 0.15 and t2 = 0.15 

ρyx 0.5 0.7 0.9 

ρ1 ρ2 μ0 μ1 L μ0 μ1 L μ0 μ1 L 

0.5 0.5 * - - 0.40 0.54 9.20 0.67 0.67 13.2 

0.7 0.79 0.46 10.4 0.27 0.52 7.87 0.65 0.65 12.9 

0.9 0.64 0.43 8.27 * - - 0.61 0.62 12.2 

0.7 0.5 0.79 0.46 10.4 0.27 0.52 7.87 0.65 0.65 12.9 

0.7 0.74 0.45 9.85 0.15 0.52 6.72 0.65 0.65 12.7 

0.9 0.64 0.43 8.40 * - - 0.62 0.63 12.2 

0.9 0.5 0.64 0.43 8.27 * - - 0.61 0.62 12.2 

0.7 0.64 0.43 8.40 * - - 0.62 0.63 12.2 

0.9 0.61 0.41 7.61 * - - 0.60 0.61 11.9 



OABOOKS.ORG 

79 
 

Table 2. Percentage of relative loss L in precision of T concerning * at permissible values of μ, when p = 2 and ρz1z2 = 
0.9 

For t1 = 0.05 and t2 = 0.05 

ρyx 0.5 0.7 0.9 

ρ1 ρ2 μ0 μ1 L μ0 μ1 L μ0 μ1 L 

0.5 0.5 * - - 0.52 0.55 3.35 0.68 0.68 4.47 

0.7 0.72 0.48 3.33 0.50 0.54 3.25 0.67 0.67 4.42 

0.9 0.57 0.46 2.73 0.44 0.52 2.91 0.65 0.65 4.28 

0.7 0.5 0.72 0.48 3.33 0.50 0.54 3.25 0.67 0.67 4.42 

0.7 0.75 0.48 3.42 0.51 0.55 3.27 0.68 0.67 4.43 

0.9 0.63 0.47 3.03 0.48 0.54 3.14 0.67 0.67 4.37 

0.9 0.5 0.57 0.46 2.73 0.44 0.52 2.91 0.65 0.65 4.28 

0.7 0.63 0.47 3.03 0.48 0.54 3.14 0.67 0.67 4.37 

0.9 0.64 0.47 3.04 0.49 0.54 3.15 0.67 0.67 4.37 

 

For t1 = 0.05 and t2 = 0.15 

ρyx 0.5 0.7 0.9 

ρ1 ρ2 μ0 μ1 L μ0 μ1 L μ0 μ1 L 

0.5 0.5 * - - 0.40 0.55 8.02 0.65 0.68 10.0 

0.7 * - - 0.36 0.54 7.71 0.64 0.67 9.96 

0.9 0.76 0.46 10.5 0.19 0.52 6.27 0.61 0.65 9.77 

0.7 0.5 * - - 0.36 0.54 7.71 0.64 0.67 9.96 

0.7 * - - 0.37 0.55 7.78 0.64 0.67 9.98 

0.9 0.94 0.47 12.0 0.32 0.54 7.32 0.63 0.67 9.89 

0.9 0.5 0.76 0.46 10.5 0.19 0.52 6.27 0.61 0.65 9.77 

0.7 0.94 0.47 12.0 0.32 0.54 7.32 0.63 0.67 9.89 

0.9 0.95 0.47 12.1 0.32 0.54 7.35 0.63 0.67 9.90 

 

For t1 = 0.15 and t2 = 0.15 

ρyx 0.5 0.7 0.9 

ρ1 ρ2 μ0 μ1 L μ0 μ1 L μ0 μ1 L 

0.5 0.5 * - - 0.46 0.55 9.94 0.69 0.68 13.4 

0.7 * - - 0.43 0.54 9.53 0.68 0.67 13.3 

0.9 0.79 0.46 10.4 0.27 0.52 7.87 0.65 0.65 12.9 

0.7 0.5 * - - 0.43 0.54 9.53 0.68 0.67 13.3 

0.7 * - - 0.44 0.55 9.62 0.68 0.67 13.3 

0.9 0.95 0.47 12.0 0.39 0.54 9.04 0.67 0.67 13.1 

0.9 0.5 0.79 0.46 10.4 0.27 0.52 7.87 0.65 0.65 12.9 

0.7 0.95 0.47 12.0 0.39 0.54 9.04 0.67 0.67 13.1 

0.9 0.96 0.47 12.1 0.39 0.54 9.08 0.67 0.67 13.2 
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Table 3. Percentage of relative loss L in precision of T concerning * at permissible values of μ, when p = 3  

For t1 = 0.05, t2 = 0.05, ρyx = 0.9, ρz1z2 = 0.9, ρz1z3 = 0.9, ρz2z3 = 0.9 

ρ1 0.5 0.7 0.9 

ρ2 ρ3 μ0 μ1 L μ0 μ1 L μ0 μ1 L 

0.5 0.5 0.74 0.73 4.82 0.74 0.74 4.87 0.75 0.74 4.88 

0.7 0.74 0.74 4.87 0.75 0.75 4.93 0.76 0.76 4.96 

0.9 0.75 0.74 4.88 0.76 0.76 4.96 0.77 0.76 5.00 

0.7 0.5 0.74 0.74 4.87 0.75 0.75 4.93 0.76 0.76 4.96 

0.7 0.75 0.75 4.93 0.77 0.76 5.00 0.77 0.77 5.04 

0.9 0.76 0.76 4.96 0.77 0.77 5.04 0.78 0.78 5.09 

0.9 0.5 0.75 0.74 4.88 0.76 0.76 4.96 0.77 0.76 5.00 

0.7 0.76 0.76 4.96 0.77 0.77 5.04 0.78 0.78 5.09 

0.9 0.77 0.76 5.00 0.78 0.78 5.09 0.79 0.79 5.15 

 

For t1 = 0.1, t2 = 0.1, ρyx = 0.9, ρz1z2 = 0.9, ρz1z3 = 0.9, ρz2z3 = 0.9 

ρ1 0.5 0.7 0.9 

ρ2 ρ3 μ0 μ1 L μ0 μ1 L μ0 μ1 L 

0.5 0.5 0.74 0.73 9.65 0.75 0.74 9.73 0.75 0.74 9.75 

0.7 0.75 0.74 9.73 0.76 0.75 9.85 0.76 0.76 9.91 

0.9 0.75 0.74 9.75 0.76 0.76 9.91 0.77 0.76 9.99 

0.7 0.5 0.75 0.74 9.73 0.76 0.75 9.85 0.76 0.76 9.91 

0.7 0.76 0.75 9.85 0.77 0.76 9.98 0.78 0.77 10.0 

0.9 0.76 0.76 9.91 0.78 0.77 10.0 0.79 0.78 10.1 

0.9 0.5 0.75 0.74 9.75 0.76 0.76 9.91 0.77 0.76 9.99 

0.7 0.76 0.76 9.91 0.78 0.77 10.0 0.79 0.78 10.1 

0.9 0.77 0.76 9.99 0.79 0.78 10.1 0.80 0.79 10.2 

 

For t1 = 0.15, t2 = 0.15, ρyx = 0.9, ρz1z2 = 0.9, ρz1z3 = 0.9, ρz2z3 = 0.9 

ρ1 0.5 0.7 0.9 

ρ2 ρ3 μ0 μ1 L μ0 μ1 L μ0 μ1 L 

0.5 0.5 0.74 0.73 14.4 0.75 0.74 14.5 0.75 0.74 14.6 

0.7 0.75 0.74 14.5 0.76 0.75 14.7 0.77 0.76 14.8 

0.9 0.75 0.74 14.6 0.77 0.76 14.8 0.77 0.76 14.9 

0.7 0.5 0.75 0.74 14.5 0.76 0.75 14.7 0.77 0.76 14.8 

0.7 0.76 0.75 14.7 0.77 0.76 14.9 0.78 0.77 15.0 

0.9 0.77 0.76 14.8 0.78 0.77 15.0 0.79 0.78 15.2 

0.9 0.5 0.75 0.74 14.6 0.77 0.76 14.8 0.77 0.76 14.9 

0.7 0.77 0.76 14.8 0.78 0.77 15.0 0.79 0.78 15.2 

0.9 0.77 0.76 14.9 0.79 0.78 15.2 0.80 0.79 15.3 
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Table 4. The values of m for different choices of r1 and μ0, when non response occurs at both the occasions, when p = 2 
and ρz1z2 = 0.9 

n = 50, t1 = 0.05, t2 = 0.05 

ρ1 0.7 0.9 

ρ2 ρyx μ0 m r1 μ0 m r1 

0.7 0.5 0.7519 12 48 0.6392 18 48 

0.7 0.5131 24 48 0.4894 25 48 

0.9 0.6809 16 48 0.6718 16 48 

0.9 0.5 0.6392 18 48 0.6435 18 48 

0.7 0.5056 25 48 0.4911 25 48 

0.9 0.6778 16 48 0.6724 16 48 

n = 50, t1 = 0.05, t2 = 0.15 

ρ1 0.7 0.9 

ρ2 ρyx μ0 m r1 μ0 m r1 

0.7 0.5 * - 48 0.9459 3 48 

0.7 0.3773 31 48 0.3209 34 48 

0.9 0.6472 18 48 0.6359 18 48 

0.9 0.5 0.9459 3 48 0.9585 2 48 

0.7 0.3209 34 48 0.3250 34 48 

0.9 0.6359 18 48 0.6366 18 48 

n = 50, t1 = 0.15, t2 = 0.05 

ρ1 0.7 0.9 

ρ2 ρyx μ0 m r1 μ0 m r1 

0.7 0.5 0.7780 11 43 0.6772 16 43 

0.7 0.5644 22 43 0.5432 23 43 

0.9 0.7145 14 43 0.7064 15 43 

0.9 0.5 0.6772 16 43 0.6810 16 43 

0.7 0.5432 23 43 0.5446 23 43 

0.9 0.7064 15 43 0.7069 15 43 

n = 50, t1 = 0.15, t2 = 0.15 

ρ1 0.7 0.9 

ρ2 ρyx μ0 m r1 μ0 m r1 

0.7 0.5 * - 43 0.9516 2 43 

0.7 0.4429 28 43 0.3924 30 43 

0.9 0.6843 16 43 0.6742 16 43 

0.9 0.5 0.9516 2 43 0.9628 2 43 

0.7 0.3924 30 43 0.3960 30 43 

0.9 0.6742 16 43 0.6749 16 43 

 

9. Conclusions 
The following insights can be drawn from Tables 1-4: 

+ Table 1 and 2 show that for fixed values of t2, ρ1 and ρyx, as t1 increases, μ0 rises while L decreases. This implies 
that a higher non-response rate at the initial occasion necessitates a larger fresh sample in the current occasion 
to improve the precision of the estimates. Conversely, for fixed t1, ρ1 and ρyx , both μ0 and L increase with t2. 
When t1, t2 and ρyx are constant, an increase in ρ1 leads to a decrease in both μ0 and L. This suggests that a 
stronger correlation between the study and auxiliary variate reduces the amount of fresh sample needed and the 
loss in precision. 

+ Table 3 reveals that for p=3, the behaviour of the estimator mirrors that observed for p=2, as indicated in 
previous point. 

+ Table 4 confirms that for permissible values of μo, the condition m ≤ r1 is consistently met. 

A review of all scenarios indicates that the loss in precision is generally minimal. In some instances, a negative loss is 
observed, demonstrating the effectiveness of the proposed imputation methods. Hence, the imputation techniques 
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introduced in this study are effective for addressing non-response issues across the occasions in two-occasion 
successive (rotation) sampling. 
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A Weighted Epidemic Chain Binomial Model (WECBM) with 
One-Introductory Case & Its Application 

 
Abstract 
This paper emphasizes the theoretical development of Weighted Epidemic Chain Binomial Model (WECBM), its 
properties and its application. Here, a more detailed comparison of the fits provided by Heasman & Reid (1961) and 
Becker (1980) for Reed-Frost chain binomial model and Becker’s ECM (general and with β=1) with the fitting of 
WECBM for four and five member households with one introductory case are discussed. For drawing an exhaustive 
comparison, both Heasman-Reid data (1961) and current epidemic data (2016) have been used. 

For this study, the chi-square test for goodness of fit and R-software version 3.3.2 were used and applications of the 
above mentioned models were shown. 

From the results, it has been observed that in the case of fitting of three epidemic chain models to current epidemic data 
for five member households, WECBM gives the best fit amongst the three. For four member households it gives a better 
fit more or less similar to Becker’s ECM (general). Again, in the case of fitting of the four epidemic chain models to 
Heasman & Reid data, Becker’s ECM (general) gives the best fit and WECBM gives the third best fit. However, 
Becker’s ECM with β =1 gives not so not-so-good fit in all three cases.  

Keywords: infectious Diseases (IDs), WECBM 

1. Introduction 
Bailey(1975)[1] in his book viewed that, in the simplest continuous-time models, the latent period is assumed to be zero, 
so that the infected individual becomes infectious to others immediately after the receipt of the infection. And on the 
other hand, in the simplest discrete-time models like chain-binomial model, the latent period is considered to be 
constant, and an infectious period is assumed to be short.  

According to Bailey[2-5], the chain binomial models can be used quite successfully in the statistical fitting of certain 
epidemic theories to real –life data relating to smaller group such as families in statistical theory. But, so far the analysis 
of epidemic processes in large groups is concerned, the discrete-time models are rather difficult, and it is easy to rely on 
the insights provided by continuous-time models for understanding the behavior of epidemics in reasonably large 
groups. As the interest is to capture information from infected households having three, four or five members, therefore 
the discrete-time models are considered for the study. It is perhaps essential to take a quick look at the way in which the 
discrete-time models were constructed, as future developments may enable them to be used as a basis for the 
investigation of the corresponding stochastic processes. 

Modeling the spread of these diseases among individuals in a population is a complex task and it becomes necessary to 
make several mathematical and biological assumptions about the factors which control the disease process.  

Cairoli (1988)[6] discussed that, the mathematical formulation of discrete time epidemic models flows from attempts by 
several investigators to present models which realistically describe the progress of a disease through a population. The 
usual starting point in model building is the set of assumptions about those factors which control the spread of a disease. 
These assumptions create a model which describes actual disease patterns. The epidemic model is then useful as a 
predictive tool for epidemiologists.  

This paper presents an extension of the Becker’s epidemic chain model [7-9], where Becker assumes the probability of 
being infected to follow a beta distribution of first kind.  

In case of application of chain binomial model to real-life epidemic data, so far no attempt has been made to assign 
weights to chains of infections. In analyzing the epidemic data it is evident that some chains of infections are more 
prevalent in occurrence than others. It may be the case that these frequently occurring chains consists of some 
unexplored infective factors and may prove of importance in epidemiological studies. It will therefore be of interest to 
study the pattern of infection through a weighted distribution where we assign some weight to each of the chain of 
infection. In this work, first a general weight expression has been used to develop the weighted epidemic chain binomial 
model from Becker’s ECM[7] and to study the properties of the WECBM. Thereafter, a specific weight, proportional to 
the occurrence of the corresponding chain, has been used to fit the WECBM to the epidemic data. However, it may be 
extended to any weight assigned to the chains of infection. 

In order to make a more exhaustive comparison with the other existing models, an attempt has been made in this paper 
to develop a new discrete time model named as weighted epidemic chain binomial model (WECBM) by assuming a 
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weighted beta distribution of first kind for the probability of being infected by contact with a given infective from the 
same household. The chain probabilities of the WECBM for three, four and five member household with one 
introductory case are also developed.  

The chain binomial models (Bailey, 1975)[1] have met with logical success, whenever fitted to infectious diseases data 
for households, for example diseases like common cold or influenza. Also, Heasman and Reid (1961)[10] demonstrated 
that, the Reed-Frost chain binomial model can provide an adequate fit to data on outbreaks of the common cold in 
households of size five. And, by comparing the observed frequencies with the expected frequencies for the total number 
of cases, they also demonstrated that, the stochastic version of the Kermack-McKendrick epidemic model [1] may 
provide an even better fit. In the later stage, a detailed comparison of the fits provided by these two models was 
attempted by Becker (1980) [7] by formulating an ECM. The Becker’s ECM includes, as a particular case (with β=1), 
the ECM corresponding to the stochastic version of the Kermack-McKendrick epidemic model [1] and, as a limiting 
case, the Reed-Frost chain binomial model. Becker (1980)[7] studied the advantages of the more general model and 
illustrated the same with an application to Heasman-Reid common cold data. In fact, the assumptions made were found 
similar in many ways to those used by Ludwig (1975)[11] in his derivations of the final size distributions for epidemics 
with arbitrary time-dependent infectiousness.  

This paper emphasizes on the theoretical development of the model, its properties and its application. A more detailed 
comparison of the fits provided by Heasman & Reid (1961)[10] and Becker (1980)[7] for the Reed-Frost chain binomial 
model and Becker’s ECM (general and with β=1) with the fitting of the WECBM for four and five member households 
with one introductory case will be discussed. The same is shown in the paper using both the Heasman-Reid data 
(1961)[10] and current epidemic data(2016)[12] for drawing the exhaustive comparison. 

2. Objectives 
The main objectives of the paper are 

(i) to develop a discrete time model named as weighted epidemic chain binomial model(WECBM) from 
Becker’s ECM(1980)[7].  

(ii) to derive the conditional probability and epidemic chain probabilities of WECBM for three, four and five 
member household with one introductory case. 

(iii) to fit the model WECBM to both the traditional Heasman-Reid epidemic data (1961)[10] and current 
epidemic data (2016)[12] for four and  five member households with one introductory case. 

(iv) to compare the results of WECBM with other epidemic chain model viz. Reed-Frost, Becker’s ECM 
(general) and Becker’s ECM with β=1.  

3. Material and Methods 
3.1 Data Used 
The Heasman-Reid data [10] is a classic set of data in the area mathematical epidemiological studies. Thus in the 
present study, this data is considered as the secondary data, so that further comparison can be drawn with the current 
epidemic data.  

This household data provide the ideal population for testing the adequacy of chain binomial models. The application of 
this data was shown by Heasman and Reid in their work [10]. Later on the same set of data was used by Becker 
(1980)[7] for application to ECM. It is only for such small groups as households that the different possible chains can 
be readily classified.  

Along with the above mentioned epidemic data, a new set of epidemic data so collected during 2015-2016 from the 4 
selected wards of Guwahati Municipality Corporation, Guwahati, Assam, India are being used for application to the 
WECBM, Becker’s ECM (1980)[7] and stochastic version of the Kermack-McKendrick epidemic model (Bailey, 
1975)[1] i.e., Becker’s ECM with β =1.   

3.2 Chi-square Test for Goodness of Fit 
The usual chi-square test for goodness of fit is used in this paper for the purpose of model fitting.  

3.3 Statistical Software Used: R Version 3.3.2 
R-software has been used to find the factorial powers, to fit the models through parameter estimation of different 
distributions under study, to find the expected frequencies as well as to calculate the chi-square for testing goodness of 
fit.  
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4. Some Related Theories 
In this section, some theories related to this paper are given. 

4.1 Chain binomial models (Bailey, 1975)[1] 
This is a model that satisfies both the criteria of being mathematically accurate as well as relatively simple in describing 
essential features of the epidemic. In describing viral diseases such as measles, chicken pox, influenza, and the common 
cold, these models were found to be very useful. 

The theory behind the generation of this model is given below. This model is set up on some basic assumptions like, the 
population under consideration is assumed to be closed and homogeneously mixed.  

As, the basic idea of the chain binomial models is that, an infectious period is contracted to a single point and the latent 
period is fixed, therefore this may be used as a unit of time. The population consists of two classes of individuals, 
susceptible and infectives. The models assume that all individuals have equal susceptibility, i.e., the capability to 
transmit the disease and have the ability to be removed from observation when the transmitting period of the disease is 
over.  

The theory given by Bailey[1] assumed that, is the number of susceptible in the group just before time t, is the 
number of infected individuals just before time t who actually become infectious at that instant. 

It was further defined as, a chance of adequate contact p(=1-q), which is the probability of a contact at any time between 
any two specified members of the group sufficient to produce a new infection if one of them is susceptible and one 
infectious. 

It was followed from the above that, the chance that any given susceptible will escape infection at time t is , i.e., will 
have adequate contact with none of the  infectives.  

Thus  is the chance of adequate contact with at least one infective, and this is what is required for infection to 
occur.  

The conditional probability of  new infections taking place (who will become infectious at time t+1) is therefore 
given by the binomial distribution 

                      (1) 

where,  

The process develops in a series of binomial distributions like Eq. (1). Hence the name of the chain binomial model is 
adopted from the chain binomial process. The different chain binomial models are discussed below in detail. 

In this paper, basically, the three types of distribution models are used to test the goodness of fit and to draw a 
comparison with other existing results. They are given below.   

4.1.1 Reed-Frost Model (Bailey, 1975)[1] 

It is used here only for comparison of the results. The final results given by Heasman & Reid (1961)[10] using the 
traditional epidemic data are used here for final comparison. 

4.1.2 Becker's ECM (Becker, 1980)[7] 

The model theory will be discussed here, as this model is considered to be the most essential and base model of the 
present study and the theoretical developments to be shown in this paper.  

(a) Chains of Infection -Becker (1980)[7] described that, as it is not always possible to determine which infective is 
actually responsible for a certain infection. But, it can be made simpler by making use of the gaps between the cases, 
to actually partition the cases of a household into generations: the susceptible who gets infected by direct contact 
with the introductory cases are said to form the first generation of cases; the susceptibles which gets infected by 
direct contact with the first generation cases are said to form the second generation and so on. By an epidemic chain, 
it truly means the enumeration of the number of cases in each of the generation.  

(b) Number of possible chains - This theory was reviewed as a part of the published work of Nath et. al. (2017)[13]. In 
general, for a binomial distribution, the formula for the total number of epidemic chains actually possible for the 
households of size m containing j introductory cases is given as 

                                                                 (2) 
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where m and j take the values as m=3,4 or 5 and j=1,2 or 3. 
(c) Conditional and unconditional probability -Corresponding to a given infective A, the conditional probability that r 

out of k susceptible of the household escape infection by A is given by .Here  is allowed to 
vary according to some known distribution. Becker (1980)[7] considered beta distribution of the first kind having 
the density 

                             (3) 

and   is simplified as           

                                                       (4) 

Then unconditional probability is given by     

                                          (5) 

(d) Chain probabilities - Becker [7] explained that, out of the sixteen(16) possible epidemic chains, let 1-2-1-0 be one 
such chain out of the sixteen(16) combinations, where this chain 1-2-1-0 actually denotes the chain consisting of one 
introductory case, two first-generation cases, one second-generation case and no cases in later generation. In the 
chain 1-2-1-0, 1: Introductory case; 2: First Generation case; 1: Second Generation case; 0: Third Generation case. 

To explain the calculation of the probabilities associated with the various possible epidemic chains, Becker [7] 
considered the chain 1-1-2-0 in a five-member household including one introductory case. The actual probability of this 
chain, conditional on the probabilities that a given susceptible escape infection by each of the four 
infected individuals, respectively was found to be 

                                   (6) 
And the unconditional probability of the chain 1-1-2-0 in a five-member household including one introductory case is 
expressed by Becker [7], as 

          (7) 

It is used in this study for the model fitting of both general and a particular case (β=1) of Becker’s model. 

4.1.3 WECBM- The Formulation of WECBM is Given in Next Section 

5. Weighted Epidemic Chain Binomial Model (WECBM) 
As discussed earlier, why it is important to assign weights to the observed data, keeping in view the practical situation 
of data collection. An attempt has been made in the present study to introduce the concept of assigning weights to the 
existing distribution i.e., to Becker’s ECM [7]. In general, let us consider  as the weights to be assigned to 
the Becker’s model (1980)[7]. Therefore the probability density function for the new model i.e., the weighted epidemic 
chain binomial model (WECBM) is written as,                                    

                                   (8) 

Then   is expressed as  

                                                      (9) 

Special case: Let us consider  which implies  

For practical purposes putting  in Eq. (9),  is written as                           

                                                 (10) 

                                                   (11) 

where 

1�,
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Then unconditional probability is given by                    

                                   (12) 

5.1 Chain Probabilities of WECBM 
Let us consider an illustration of a five-member household with one introductory case, as per the formula Eq. (1), 
wherein the total no. of possible epidemic chains are Similar to that of the chain probabilities calculated by 
Becker [7], an attempt has been made to find the chain probabilities for the weighted epidemic chain binomial model. 
Furthermore, let, 1-2-1-0 be one such chain out of the total 16(sixteen) possible combinations, where this chain 1-2-1-0 
actually denotes the chain consisting of one introductory case, two first-generation cases, one second-generation case, 
and no cases in the last generation. 

Therefore, similar to Becker’s illustration, the computation of the probabilities associated with the different possible 
epidemic chains, the chain 1-1-2-0 is considered in a five-member household including one introductory case. The 
probability of this chain, conditional on the probabilities that a given susceptible escape infection by each 
of the four infected individuals, respectively is found to be             
(13) 

The unconditional probability of the chain 1-1-2-0 in a household of size five including one introductory case is 
expressed to be as  

      (14) 

The probabilities for all the possible epidemic chains for WECBM for three, four, and five member households with one 
introductory case are presented in the following three tables 1, 2, and 3 respectively.  In all three tables, the chain 
probabilities of WECBM and Becker’s ECM (1980)[7] are presented for theoretical comparison.  

Table 1. Epidemic chain probabilities for 3-member households with one introductory case 

Type of 

Chain 

Chain probabilities 

ECM(Becker,1980) WECBM 

1-0 
  

1-1-0 
  

1-2 
  

1-1-1 
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Table 2. Epidemic chain probabilities for 4-member households with one introductory case 

Type 

of 

Chain 

Chain probabilities 

ECM(Becker,1980) WECBM 

1-0 

 
  

1-1-0 

 
  

1-2-0 

 
  

1-1-1-0 

 
  

1-3 

 
  

1-2-1 

 
  

1-1-2 

 
  

1-1-1-1 

 
  

   
Table 3. Epidemic chain probabilities for 5- member households with one introductory case 

Type of 

Chain 

Chain probabilities 

ECM(Becker,1980) WECBM 

1-0 

 
  

1-1-0 

 
  

1-2-0 

 
  

1-1-1-0 

 
  

1-3-0 

 
  

1-1-2-0 

 
  

1-2-1-0 

 
  

1-1-1-1-0 

 
  

1-4 
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Type of 

Chain 

Chain probabilities 

ECM(Becker,1980) WECBM 

1-3-1 

 
  

1-1-3 

 
  

1-2-2 

 

 

 

1-2-1-1 

 
  

1-1-2-1 

 
  

1-1-1-2 

 
  

1-1-1-1-1 

 
  

The number of possible cases, i.e., the combination of the epidemic chains for the above three tables were calculated by 
using the formula Eq. (1) and further the probabilities were calculated by using the Eq. (12).  

It can be viewed from the above tables that, the expressions for the chain probabilities of the WECBM are a bit 
complicated as compared to the Becker’s ECM. It gives us an idea about the complicacy of WECBM than that of 
Becker’s ECM.  

5.2 Method of Estimation  
The parameter estimate of both Becker’s ECM (general and with β= 1) and WECBM,  and  has been calculated by 
using the method of maximum likelihood estimation (MLE) for multinomial distribution approach as described below: 

Let there be k chains of infections for a given size of household. Since the chains are mutually exclusive they can be 
assumed to follow a multinomial distribution. Suppose C1, C2, …,Ck be k mutually exclusive and exhaustive chains of 
infection with respective  probabilities p1, p2, …,pk. Here, each pi , i=1, 2,...,k is in turn a function of α and β as given 
in Table 1, Table 2 and Table 3. 

The probability that C1 occurs x1 times, C2 occurs x2 times,…, Ck occurs xk times in n independent observations, is given 
by 

                            (15) 
where  and B is the number of permutation of the chains of infection C1, C2, …,Ck. 
To determine B, it is required to find the number of permutations of n objects of which x1  are of one kind, x2 of 
another kind,…, xk of the kth kind, which is given by, 

                                                                               (16) 

Hence,                         (17) 

which is the required probability function of the multinomial distribution. It is so called since Eq. (17) is the general 
term in the multinomial expansion,              
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Since, the total probability is 1, so 

        (18) 

For MLE, the likelihood function is given by, 

                          (19) 

where . Since, pi , i=1, 2,...,k are functions of α and β , the ML estimates of α and β are obtained by the 

maximum likelihood equations   

                                        (20) 

and 

                                                                     (21) 

6. Applications to Epidemic Data 
In this section, the applications of WECBM and Becker’s ECM with one introductory case to both sets of epidemic data 
are shown in detail. R-programming is used to calculate the estimates of the two parameters of both models (by 
the MLE method described in Section 5.2). 

In order to test the adequacy of these models, the using the usual chi-square goodness of fit has been used. Pooling was 
done for all the chains having expected frequencies of less than five.  

Let, H0: there is no significant difference between the observed and expected values of the distribution. 

As an application, the WECBM is fitted to epidemic data quoted in Section 3.1 and reproduced in Table 4. The value of 
the estimated parameters for the WECBM is calculated to be  = 13.59598 and  =2.018984 respectively.  

Table 4. Fitting of distribution to Heasman-Reid data(1961) for 5- member households with one introductory case 

 

Type of 

chain 

 

Observed 

Frequency 

Expected Frequency 

Reed –Frost model 

(Heasman& Reid 1961) 

Epidemic chain model 

(Becker 1980) 

WECBM 

General β =1 

1-0 423 409.9 410.5 435.7 413.2 

1-1-0 131 146.2 141.5 117.7 131.3 

1-2-0 24 24.8 27.3 32.0 40.2 

1-1-1-0 36 44.2 42.0 29.0 37.3 

1-3-0 3 2.3 3.5 8.2 7.8 

1-1-2-0 8 5.6 6.2 6.6 8.2 

1-2-1-0 11 6.8 13.3 13.9 9.5 

1-1-1-1-0 14 10.1 9.6 5.9 8.7 

1-4 0 0.1 0.2 1.5 0.9 

1-3-1 0 1.1 1.6 3.6 1.1 

1-1-3 2 0.4 0.5 1.1 1 

1-2-2 1 1.8 2.3 3.3 1.1 

1-2-1-1 3 6.7 1.7 1.8 0.2 

1-1-2-1 2 1.6 1.8 1.9 1.2 

1-1-1-2 2 0.9 0.8 0.9 1 

1-1-1-1-1 4 1.5 1.2 0.9 1.3 

Total 664 664 664 664 664 

χ2   (Chi-square) 12.6(7df) 6.1(5 df) 20.9(7df)  18.159  (5df) 
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χ2 tabulated for 5df at 95% level of significance=1.145 

χ2 tabulated for 7df at 95% level of significance=2.167 

Table 4 gives the results of fitting of different models viz., Reed-Frost model, Becker’s ECM (general and with β =1), 
and WECBM to Heasman- Reid data. The observed and expected frequencies for various types of chains, the value of χ2 
measure for goodness of fit along with the df are shown in the table. In a five member household with one introductory 
case there are 16(sixteen) possible chains observed over 664 households. Although all the fitted values are found to be 
non-significant, it can be found that Becker’s ECM (general) gives the best fit to the observed data amongst the four 
models given in the table. The Reed-Frost model is found to give the second best fit to the data. Restricting the 
parameter of Becker’s ECM to β =1 reduces its efficiency to fit the data to a huge extent. The WECBM also appears to 
perform not very satisfactorily in estimating the distribution of the number of chains of infections in a five member 
household with a single introductory case although it outperforms Becker’s ECM with β =1. 
Again, for comparison of the three models, by applying the current epidemic data for four and five member households 
with one introductory case, the expected values of the WECBM, Becker’s ECM (general and with β =1) as given in 
Table 5 and Table 6 has been computed. 

Table 5. Fitting of distribution to current epidemic data (2016) for a 4-member household with one introductory case 

 

Type of chain 

 

Observed 

Frequency 

Expected Frequency 

Epidemic chain model Weighted epidemic 

chain binomial 

model 

General β =1 

1-0 130 137.12 143.79 136.99 

1-1-0 53 45.26 38.45 45.47 

1-2-0 16 9.44 11.42 9.33 

1-1-1-0 10 11.81 8.77 11.89 

1-3 0 0.79 1.99 0.76 

1-2-1 0 1.27 1.53 1.26 

1-1-2 0 1.47 1.73 1.45 

1-1-1-1 0 1.84 1.32 1.85 

Total 209 209 209 

 

209 

χ2  (Chi-square) 11.899(2 df) 15.408(3 df) 11.992(2 df) 

Parameter estimates   

 

31.860242 

4.953511 

6.615281 

- 

34.919342 

5.578844 

 
χ2 tabulated  for 2df at 95% level of significance=0.103 

χ2 tabulated  for 3df at 95% level of significance=0.352 
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Table 6. Fitting of distribution to current epidemic data (2016) for 5- member household with one introductory case 

Type of chain Observed 

Frequency 

Expected Frequency 

Epidemic chain model Weighted epidemic 

chain binomial model 

 

General β =1  

1-0 64 71.97 78.06 70.76  

1-1-0 30 25.84 21.09 24.95  

1-2-0 10 5.00 5.75 6.74  

1-1-1-0 13 7.99 5.21 8.24  

1-3-0 0 0.62 1.47 0.87  

1-1-2-0 1 1.19 1.19 1.45  

1-2-1-0 0 2.53 2.49 1.65  

1-1-1-1-0 1 1.90 1.07 2.01  

1-4 0 0.04 0.28 0.25  

1-3-1 0 0.29 0.66 0.12  

1-1-3 0 0.08 0.20 0.09  

1-2-2 0 0.44 0.59 0.38  

1-2-1-1 0 0.35 0.33 0.32  

1-1-2-1 0 0.35 0.33 0.20  

1-1-1-2 0 0.16 0.16 0.18  

1-1-1-1-1 0 0.25 0.12 0.79  

Total 119 119 119 119  

χ2  (Chi-square) 14.382(2df) 26.426(3df) 10.786(2df)  

Parameter estimates   

 

70.095296 

9.587776 

7.627815 

- 

65.458672 

9.426828 

 

 

χ2 tabulated  for 2df at 95% level of significance=0.103 

χ2 tabulated  for 3df at 95% level of significance=0.352 
Table 5 and Table 6 give the results of fitting the current epidemic data to three different models viz., Becker’s ECM 
(general and with β =1) and WECBM. The observed and expected frequencies for various types of chains, the value of 
χ2 measure for goodness of fit along with the df are shown in the tables. In a four and five member household with one 
introductory case, there are 8(eight) and 16(sixteen) possible chains observed over 209 and 119 households, 
respectively.  

From Table 5, it has been observed that WECBM and Becker’s ECM (general) give more or less similar levels of best 
fit to the data. And, as compared to the other two models, Becker’s ECM with β =1 is found to give a good fit to the 
data.  

From Table 6, it has been observed that WECBM gives the best fit to the observed data amongst the three models given 
in the table. Becker’s ECM (general) is found to give the second best fit to the data. Similar to that of the application 
using Heasman – Reid data, Becker’s ECM with β =1 reduces its efficiency to fit the data to a huge extent as compared 
to the other two models.  

7. Conclusion  
The present study is an attempt to develop a solution to the difficulty of epidemic processes and also to study the pattern 
of the spread of IDs using some real-life ID data or epidemic data. For this purpose, the WECBM was developed to 
simply provide an alternative approach to Becker’s ECM (1980)[7]. But as compared to Becker’s model it appears to be 
a complicated model. All the expressions for chain probabilities worked out for households with sizes three, four, and 
five having one introductory case in a closed population were found to be complicated ones.  
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This study facilitates us to draw a more in-depth inference of the theory so developed for WECBM. In such applications, 
a better result can always be expected with a large and standard set of sample data. Due to the limited availability of 
data and resources for the study, like manpower, money, and time, a larger set of primary data could not be collected 
and the survey and analysis were restricted to 600 sample data only. 
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Ranked Set Sampling: An Estimation of Infant Mortality Using Bayesian 
Method 

 

Abstract 
The technique of Ranked set sampling (RSS) in the estimation of the probability of occurrence of a dichotomous event 
in a population is found to be effective and reliable. In this work, the superiority of RSS has been discussed for 
situations where the probability of occurrence, say p, of an event is not fixed but a random quantity, by using the 
method of Bayesian estimation. The closeness of the estimates thereof obtained through maximum likelihood 
procedures (when p is assumed as a fixed quantity) and Bayesian estimation in the sample design of the SRS and RSS 
are evaluated using Pitman closeness criteria. The performance of the proposed procedure has been illustrated through 
numerical simulation as well as in the estimation of the probability of infant death in India using the real-life 
demographical data from National Family Health Survey-III(2005-06). 

Keywords: Bayes estimator, Pitman closeness criteria, square error loss, risk function, and infant deaths 

1. Introduction 
McIntyre’s[1] proposed method of Ranked Set sampling (RSS) is referred to as a suitable alternative of the sampling 
procedure for situations where obtaining information is difficult in terms of the cost incurred and time required during 
collection. In studies [2-6] where the population of concern is dichotomous and the probability of occurrence of an 
event have discussed that the estimators obtained through the design of RSS, which is found to be comparatively more 
efficient and reliable inference than better known simple random sampling (SRS). In a few recent works [7-11], the 
performance of estimators of  based on the ranked set sample for situations where  is assumed to be an unknown 
and random quantity, have discussed. 

In existing literature [7-11], more emphasis has been given to the estimation of  under RSS, which is based on the 
assumption that the parameter  is an unknown but a fixed quantity. In practical situations, some prior information about 

 and  is treated as an unknown and random quantity. The present work is an attempt to highlight the performance of a 
Bayesian estimate of  based on the ranked set sample, and comparing the closeness of the estimates obtained through 
the procedures of maximum likelihood(ML) under both SRS and RSS through Pitman nearness criteria. 

We organize the chapter in the following way. In section 2, both the classical version estimator based on the ML principle 
and the Bayes estimator of the population proportion have been discussed. Section 3 discussed the Pitman Closeness 
Criterion for comparison of the estimators in terms of risks obtained through both SRS and RSS procedures. In section 4 
the proposed procedure is used to estimate the probability of infant death in India using real-life demographical data from 
National Family Health Survey-III. Lastly, section 5 gives a brief concluding remark. 

2. Estimation of Parameters 
2.1 Maximum Likelihood Estimation 
Consider a population where the variable of interest (X) is dichotomous then there will be two possible outcomes, 
success or event occurred (denoted as 1) and failure or non-occurrence of event (denoted as 0). Thus, X follows 
Bernoulli , where  denotes the probability of occurrence of an event or proportion of occurrence of an event. Let 

 constitutes a random sample of size  and each  follows independent and identically (iid) 
Bernoulli , where  is an unknown parameter that lies between .  

For , a sample of  sets of size, , observed from the dichotomous population and are ranked within each 
set. Classification (ranking) within each set can be the result of judgment ranking or through concomitant variables. The 

 smallest ranked item in each of the  sets are quantified to be either 1 (“occurrence of an event") or 0 
(“non-occurrence") for . Let  represents the class of  judgment order statistics and  denote 
the  observation from that class, then this sampling scheme yields the ranked set sample denoted as, , for 

 and , under the assumption that the judgemental identification of ranks is perfect and is done 
with negligible cost. The ’s constitutes a typical balanced ranked set sample of size  and can be 
represented as:  
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Corresponding to each  class, due to the nature of RSS, , constitutes independent and identical 

Bernoulli random variables with probability of occurrence of the event, say , for all , where  is 

given by [12]  

 

The ML estimator of the population parameter  using the data , is one of the 
possible estimation procedures and is given by Terpstra (2004). The natural unbiased estimator and the variance for  
based on ranked set sample[10] can be given by  

 

 

If the same samples are assumed to be obtained from SRS procedure and let it be symbolized as , where 
, be the independent and identically Bernoulli distributed random variables having occurrence probability , 

then MLE of the  and its variance will be given by  

 

 

Here, we have opted for the alternative method based on the sampling structure for Bayesian estimation of the 
population proportion . In next section, a comparison among estimators obtained by MLE and Bayes using SRS and 
RSS procedures is discussed. 

2.2 Bayesian Estimation 
2.2.1 Under RSS 
Under the assumption that the proportion parameter  is a random variable and can be explained through a suitable 
prior density, say  of  defined over the interval . An attempt has been made to derive a Bayesian estimator 
of  by utilizing  the available prior information  and sample information gathered through RSS methodology. 
Let the observations obtained following the RSS procedure is denoted as, =( , , , where 

. Corresponding to each  class, s are independent and identical Bernoulli ( ) variate, 
for all . Let us define the variables  

 

By the virtue of ranked set sampling, the variables  are independently distributed as  Binomial 
 and is such that   

 

Estimation of the  under Bayesian paradigm can segregated based on the definition of  as:  
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Case I:  is a function of  
For each , ,  is a function of the basic parameter , so we denote it as . The likelihood 
function of  will be given by  

 

where  and  for all . Suppose prior density for  is Beta distribution and is of 

the form  

 

The posterior density of , given , with respect to the prior  for  is given by  

 

 

 

The derived form of the posterior distribution is not explicitly, therefore Monte Carlo simulation technique has been 
adopted for characterization. For a sufficiently large number of replications, say  observations have been randomly 
drawn from the posterior distribution  and let it be denoted as . Then the posterior mean and 
variance of  can be approximated as  

 

and 

 

Thus, under square error loss function the Bayes estimate of  with respect to the prior  has obtained as  

 

2.2.2 Case II-  Is Independent and Identically Distributed 

According to the nature of the RSS,  are independently distributed as  for each 
. So, in order to find estimate of the parameter of interest  and satisfying the relation , it is assumed 

that ’s are independent and identically distributed with a common prior density, say , which is defined over the 
compact set [0,1]. The posterior density of , given , with respect to the prior density , for all 

 is given by   
 

 

  

Bayes estimator of  has been obtained using squared error loss function as  
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After having the estimators , by virtue of the relation (2.2), a Bayesian estimator of  as   

 

2.2.3 Under SRS 

The prior distribution of the parameter of  of the data  obtained using SRS, is assumed to follow the same Beta 

distribution with parameters , then under this setup the posterior of  will be given by  

 

 Using the equation-(14) the posterior mean and variance of  will be given by  

 

 

3. Pitman Closeness Criterion for Comparison 
The goal of this section is to compare the estimators of  derived in the previous section. To estimate an ML estimator 
no of prior specification is required and it does not involve any particular loss function, as converse of Bayesian method. 
Therefore, Thus, mean square error (MSE) corresponding to both ML and Bayes’ estimators has been calculated, as 
the MSE of an estimator can be regarded as a risk function under squared error loss and can be used for comparison 
purposes [7]. Under square error loss the risk of  for parameter  is given by  

 

On the other hand, the risk of  has a theoretical expression obtained as  

 

To compare the closeness of the estimates of the parameters obtained for this MLE and Bayesian estimation methods 
based on samples of SRS and RSS, the concept of Pitman measure of closeness or Pitman closeness[13] is adopted. 
Pitman’s measure of closeness is a probability that measures the frequency with which one estimator is closer to the 
value of a parameter than another competing estimator within the same class of estimators. 

 Let  and  are two estimators of the parameter  an estimator  will be said to be Pitman 
closer (to ) than another estimator  for all  if   

 

The necessary condition[14] to show that  is more peak (Pitman closer)to  than  is that  

 

 

Following comparison among the estimators in general is possible to evaluate the method of estimation (MLE and 
Bayes) based on sampling techniques (SRS and RSS): 

 Let  and  denotes the risks under SRS and RSS, respectively then  

 

 The risks under SRS and RSS are  and , respectively, and can be written as  

 

Since, ’s, for all  is a non-decreasing sequence and subsequently, among two sequences  and 
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, one is non-decreasing and the other is non-increasing. So, from Chebyshev’s inequality for ’s and 
’s we have   

 

As we know that the variance of  in SRS is , the required justification follows from the fact that   

 

 Relationship among risks of ML and Bayes estimators,  and  under SRS   

 

 

 

 

 

 Relationship among risks of ML and Bayes estimators,  and under RSS 

 

 

 

 

Note: Under square error loss function the risk of  is given as  

 
that cannot be further simplified analytically.  

To compare the risks among the ML and Bayes estimators obtained following SRS viz.,  and RSS procedures 
, illustration has been proposed numerically through a simulation study. For the numerical computation 

we have considered, in particular,  and Beta distribution parameters , , 
, . The computation of the risk values, , for the Bayes estimator  under RSS, has obtained by 

following the simulation technique through Metropolis-Hasting’s algorithm and then plotted along with other risks for 
ML and Bayes, under SRS and RSS, over the whole range of . The plotted risk functions have been presented 
in Figure 1 of the Appendix section. Obtained figures have shown that the risk curves corresponding to the ML 
estimator based on RSS, , is lying below the risk curve of both ML and Bayes estimators,  and , which 
are based on simple random samples. It has also depicted that the risk curves corresponding to Bayes estimators  
and  are completely lie below the risk curve of  based on the ranked set sample, implying that the Bayes 
estimators are uniformly better than the other proposed estimators. We also observe that the risk curves based on Bayes 
estimators  and  are not significantly different and can conclude that both of the Bayes estimators based on 
ranked set samples are more or less equally good. For the given parametric combinations of  and  are concerned, it 
is found that both Bayes’ estimators  and  are more pitman close to  than any other estimator. 

4. Illustration with Real-life Data 
In public health related studies, infant survival is regarded as an important indicator that defines the health status of a 
country or State. Here, our objective is to illustrate the performance of proposed procedures (ML and Bayes), and their 
properties while estimating the probability of infant death, under both SRS and RSS, in India. For the present study, 
the database of Demographic and Health Surveys (DHS) has been utilized. DHS provides national and state estimates of 
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various demographic measures that help in different family planning. Here, is the data set of National Family Health 
Survey-III (NFHS-III) of India for the year 2005-06 of a few selected states from different areas of India Bihar 
(East), Assam (northeast), Rajasthan (north), Madhya Pradesh (MP) (central), and Orissa (East) have been considered. 
And, according to the NFHS-III report[15] these selected states have experienced comparatively high infant death rates 
than other states in the region. Those children who were born in a specific period (2001-2005) of five years prior to the 
period of the NFHS-III survey have been considered as our population of interest. 

 Earlier works[16-17] suggested that the survival of a child is positively associated with the age of the mother, and 
lowering the mother’s age while childbearing would lower the survival chance of the child. Therefore, the age of the 
mother (in months) has been used for ranking purposes in ranked set sampling. The following steps have been followed 
to obtain the samples through the ranked set sampling principle [2]: 

+ A simple random sample of  units are drawn from the study population and partitioned randomly into  

sets each having  units. 

+ In each of  non-overlapping sets according to the mother’s age the units were ranked. In the case of ties, the 

observations are ordered systematically in the sequence.[3] 

+ From the first set, the unit corresponding to the mother with the lowest age is selected. From the second set, the 

unit corresponding to the mother with the second lowest age is selected, and so on. Finally, from the  set, 

the unit corresponding to the mother with the highest age is selected. The remaining  sampled units 

are discarded from the data set. 

+ Steps 1 - 3, called a cycle, are repeated  times to obtain a ranked set sample of size .  
Corresponding to each selected mother, information regarding the status of her infant survival status has been collected. 
If the infant is not alive then  will take the value ‘1’ and ‘0’ otherwise. With this notation, we have the sampled 
observations from each of the selected states for different of set sizes, , and number of cycles, . Here,  denotes 
the probability that an infant who is not alive in the  class, and  is the probability that an infant dies before 
reaching one year in the entire population. The implementation of the proposed ML and Bayes approach of estimation, 
based on both a simple random sample and a ranked set sample, has been demonstrated. Here we use Beta ( ) priors 
with =  and . For these parametric combinations of , estimates compute the 
estimates ,  and  and all computed results are summarized in Tables 1 and 2 in the Appendix 
section. It has been observed that the Bayes, estimate of the probability that an infant dies before the completion of 
the year is very close to estimates, obtained through the ML approach. Also, both estimates are quite near to the value 
which is the estimated value of  reported by NFHS-III(2005-06)[15]. It is also clear that the proposed Bayes 
procedure, especially the estimators  and  based on the ranked set samples are showing comparatively 
greater precision than the ML estimates. The sampling of ranked set sample units is done by using the Statistical 
Analysis System (SAS) package, University edition, and all other computation works are carried out by using the R 
package (version 3.4.4). 

5. Conclusion 
The focus of the present study lies on the problem of estimating unknown population proportion or probability of 
occurrence of an event( ), where  is a random quantity, based on a ranked set sample drawn from a dichotomous 
population. An application of the Bayesian method of estimation and existing maximum likelihood procedure 
(incorporating classical framework), for estimating , have been discussed. Under the assumption about the parameters, 

, that it is a function of , no explicit form of posterior has been found, whereas, if one follows the structural 
independence of RSS procedure, if ’s considered as an independent variable, then the Beta conjugate posterior will 
be obtained. To compare the closeness of the estimators towards the estimation of parameters, both simulation and 
real-life-based results confirmed that for the given parametric combinations of  and , both the Bayes’ estimators 
(viz.,  and ), based on ranked set samples are more pitman close to  than any other estimator. In the 
estimation of the probability of infant deaths, Bayesian estimators based on a ranked set sample not only proved more 
effective and efficient than any other estimator but also consistent with the NFHS reported value. This study showed 
that the Bayesian estimation of the probability of occurrence of an event in the population using a ranked set sample is 
not only suitable and applicable for the estimation of demographic parameters but also provides greater efficiency and 
accuracy than the corresponding other procedure. 
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Table 1. ML and Bayes estimators of the probability of infant death under SRS and RSS of selected states in India and 
NFHS-III reported infant death, for different s; m; α and β 

State s m ML Risk   Bayesian Estimates Population 
     

Assam 3 170 0.06 0.061 0.5 0.5 0.062 0.063 0.059 0.066 
     

2 2 0.064 0.071 0.059 
 

     
3 5 0.066 0.075 0.059 

 
     

5 3 0.069 0.086 0.059 
 

Bihar 6 230 0.06 0.06 0.5 0.5 0.061 0.062 0.059 0.062 
     

2 2 0.063 0.067 0.059 
 

     
3 5 0.063 0.07 0.059 

 
     

5 3 0.066 0.077 0.059 
 

M.P. 5 120 0.07 0.067 0.5 0.5 0.067 0.07 0.066 0.07 
     

2 2 0.07 0.081 0.066 
 

     
3 5 0.071 0.083 0.066 

 
     

5 3 0.074 0.083 0.066 
 

Orissa 3 200 0.06 0.06 0.5 0.5 0.061 0.062 0.058 0.065 
     

2 2 0.063 0.069 0.058 
 

     
3 5 0.064 0.072 0.058 

 
     

5 3 0.067 0.082 0.058 
 

Rajasthan 5 80 0.06 0.055 0.5 0.5 0.056 0.06 0.054 0.065 
     

2 2 0.059 0.076 0.054 
 

     
3 5 0.061 0.084 0.054 

 
     

5 3 0.066 0.071 0.054 
 

 
Table 2. Risks (in 104) for the ML and Bayes estimators of probability of infant death under SRS and RSS of selected 
states in India and NFHS-III reported infant death, for different s; m; α and β 

State s m ML Risk   Bayesian Estimates 
     

Assam 3 170 1.119 1.108 0.5 0.5 1.113 0.383 0.03 
     

2 2 1.117 0.418 0.028 
     

3 5 1.118 0.43 0.03 
     

5 3 1.115 0.488 0.026 
Bihar 6 230 0.726 0.624 0.5 0.5 0.7 0.246 0.014 

     
2 2 0.715 0.261 0.013 

     
3 5 0.715 0.267 0.012 

     
5 3 0.718 0.293 0.012 

M.P. 5 120 1.037 1.016 0.5 0.5 1.024 0.212 0.01 
     

2 2 1.027 0.235 0.008 
     

3 5 1.029 0.242 0.009 
     

5 3 1.015 0.281 0.007 
Orissa 3 200 0.94 0.84 0.5 0.5 0.848 0.321 0.024 

     
2 2 0.874 0.346 0.024 

     
3 5 0.886 0.356 0.024 

     
5 3 0.826 0.399 0.021 

Rajasthan 5 80 1.299 1.192 0.5 0.5 1.274 0.276 0.013 
     

2 2 1.28 0.33 0.012 
     

3 5 1.241 0.345 0.011 
     

5 3 1.251 0.428 0.011 
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Appendix of Figures 

 

 

 
Figure 1. Risk curves (in 104) for the estimators , , ,  and when s = 4; m = 25 and s = 6; m = 

50 at different choices of α and β 
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Bayesian Computation for the Concordance Correlation Coefficient: An 
Illustration Through Liver Cirrhosis Patients 

 

Abstract 
Clinical trials are alarmed very often to assess whether different raters/instruments produce similar results to measure a 
quantitative variable.  The assessment of agreement between two raters for continuous responses plays a crucial role in 
setting decisions about medical diagnostic tools. In the current practice, more emphasis has been given to using 
the concordance correlation coefficient as a measure of reproducibility. These assessments are commonly carried by 
the concordance correlation coefficient. This paper carries the Bayesian counterpart to compute the concordance 
correlation coefficient estimator and establishes the performance of the proposed estimator. The methodology is 
illustrated on Liver Cirrhosis marker data. It is found feasible to compute the concordance correlation coefficient 
through an application of prior information. The Bayesian counterpart of CCC estimates applied between serum 
bilirubin and albumin among liver cirrhosis patients data and its 95% posterior interval for concordance correlation 
coefficient found to be very narrow, which indicates that estimates are very precise. 

Keywords: Agreement analysis, ICC, Bayesian, repeated measurements 

1. Introduction 
The experiment of reproducible research is important to support different scientific research. The idea behind the 
development of a new experimental tool is to get at least the same level of output as the available gold standard. The 
measurement of the performance of the newly developed tool can be accessed through reproducible research with an 
available gold standard. Indeed, the requirement to quantify agreement between two tools is a matter of interest.  If 
performances between two tools are captured through categorical observation, then the agreement analysis plays the 
role of demonstrating a level of equal performance. Particularly, in medical research, the application of biomarkers is 
important to detect the stage of any disease. The exploration of the relation between two markers is useful to know the 
actual medical scenario condition of any disease. When two continuously measured markers are positively correlated, 
then it is natural that the high level of one marker is automatically influencing other presence. Pearson’s correlation 
coefficient is widely useful to detect the agreement between two markers. A study by [1] identified limitations in the 
system's ability to detect poor agreement in certain scenarios. For instance, in a laboratory setting where blood cell 
counters are used for hematology analysis, duplicate measurements of the same blood sample are routinely performed. 
The system struggled to flag inconsistencies in these duplicates. 

on multiple occasions. Plotting the first measurement against the second measurement of the red blood cell counts for 
all available blood samples, they anticipated that the measurements would lie on a 45° line through the origin, within a 
tolerable error. While measuring a linear relationship, the Pearson correlation coefficient is unable to identify any 
potential deviations from the 45o line. There are various methods for assessing raters' agreement. For example, kappa 
statistic [2] and the weighted kappa statistic [3] are the most popular indices for measuring agreement between two rates.  
However, the Pearson correlation coefficient is widely used to capture the linear relationship between variables but fails 
to explore the departure from a 45o line from the origin. The t-test measures the effectiveness of response between two 
categories but fails to measure case-by-case agreement. Instead of treating duplicate readings as two separate readings, 
these approaches treat them as replicates (random). If there were a first reading (earlier) and a second reading (later), 
there would be two different readings. The discussion about the performance of Intra-class correlation [4, 5] and 
within-subject [1] had been used conventionally as indices to evaluate reproducibility. The linear relation between two 
random variables can be accessed through the concordance correlation coefficient (CCC) when the intercept is zero and 
the slope is one. Review and comparison of different methods (i.e. agreement measurement are also discussed by [1]. 
The concordance correlation coefficient has been extended to address more general types of outcomes such as 
categorical data and complex study designs involving multiple observers and repeated measures [6]. It is found that the 
generalized CCC is the same to the weighted kappa coefficient for ordinal data [Cohen, 1968] and the kappa coefficient 
for binary data [2]. 

Agreement between continuous data measured from different observers or measurement methods is a question that has 
received a great deal of consideration from the scientific community. The methodology to compute agreement 
assessment between two rater’s observers through continuous data is established by CCC [1]. Continuous outcomes as 
well as those that can be so treated such as count response [1]. However, literature for categorical data is established 
comparatively earlier [2, 3]. However, the Bayesian counterpart to compute the concordance correlation coefficient 
(CCC) is yet to be explored. The computational approaches through frequency on Intra-class Coefficient (ICC) are well 
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organized by [7, 8]. The Bayesian approach for ICC is also developed by [9]. Recently, the Bayesian Estimator of the 
Intra cluster Correlation Coefficient from correlated binary responses is explored by [10]. The application of weighted 
concordance correlation for longitudinal data is discussed in [11]. The ICC quantifies the overall data variance due to 
between-subject variability. But CCC measured the distance in the plane of each pair of data to 45o line from the origin 
(the concordance line) [12]. Particularly, CCC is useful for more than two observers by adjusting the confounders. 
Moreover, CCC for more than two observers and adjusted by confounding covariates would be desirable for many real 
problems [1, 2, 13]. There are different techniques to evaluate agreement between two raters. For example, kappa 
statistic [2] and the weighted kappa statistic [3] are the most popular indices for measuring agreement between two rates.  
However, the Pearson correlation coefficient is widely used to capture the linear relationship between variables but fails 
to explore the departure from a 45o line from the origin. The t-test measures the effectiveness of response between two 
categories but fails to measure case-by-case agreement. In a case of very scattered data least square fails to find the 
departure from intercept equal to 0 and equal slope to 1. It is true, that concordance correlation can precisely execute the 
reproducibility between two readings through exploring departure from intercept equal to 0 and slope equal to 1. 

The CCC is useful to calculate sample size for study validation [14]. It has an advantage for detecting goodness of fit in 
mixed effect modeling [11]. A class of CCC estimators is useful to handle the outlier data [6]. The CCC is also useful to 
specify the level of agreement for more than two raters [6]. 

The extension of concordance correlation coefficients for repeated measurement is studied through weighted extension 
[15]. The assessment of generalized nonlinear mixed effects is also addressed by the concordance correlation coefficient 
[11]. The modified version of the concordance correlation coefficient for the generalized estimating equation is 
proposed by [13].  When a significant clinical range is well-known and the study is conducted over that range, the 
CCC offers a meaningful interpretation and is unit-free. In addition, the accuracy and precision components of the CCC 
offer more insight. Therefore, the CCC, accuracy, and precision remain very useful tools. Therefore, we applied 
Bayesian counterpart of the concordance correlation coefficient. In this paper, our objective is to apply Bayesian 
concordance correlation coefficient on Liver cirrhosis data and explore its performance. The prior information about the 
relation between biochemical markers for Liver Cirrhosis patients has been used to illustrate the method. We propose an 
estimator for the concordance correlation coefficient and establish the performance of the proposed estimator. The 
standard error of the estimation is also derived and calculated. The application of the proposed methodology is 
illustrated with liver cirrhosis patient data. 

2. Data Methodology 
2.1 Concordance Correlation Coefficient   
Suppose the observation of two different biochemical parameters are observed and . Now the set of two 
measurements and .are independent and identically distributed bivariate populations 
with means and and covariance matrix 

 

Now the observations are called as perfectly agreed if for The presence of an angle between x and y 
can be denoted as , i.e. . 

         (1) 

Now,  and  are n-dimensional vectors in the Euclidean norm  

Further, the above equation can be stated as  

           (2) 
where  is the Pearson correlation coefficient. If only if , when x and y are perfectly agreed. But it failed to 
work for the scale change. The degree of agreement between x and y can be observed through the expected value of the 
squared difference ] i.e. 

]=(  

=( (3) 

If each pair, , and , in the population are in perfect agreement,  would be 0. To scale the index value 
between -1 and 1, the following transformation is suggested: [16]: 
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          (4) 

2.2 Relation between Pearson Correlation and Concordance Correlation. 
The relationship between Pearson ( ) and Concordance correlation ( ) can be described as below: 

(I)  Where,  and  having the same sign. 

(II)  , if and only if and i.e. .  

(III) if and only if . 

(iv) if and only if  

where  and are the Pearson correlation coefficient and concordance correlation coefficient (CCC) respectively. The 
above equation (iv) reduced to Pearson correlation coefficient , if and only if  

The CCC is substituted as sample moments of the independent bivariate sample into the above equation by . The 
normal approximation is provided through the Fisher’s Z-transformation as 

                                 (5) 

[16] proposed concordance correlation coefficient is based on the squared function of distance  when the 
underlying bivariate distribution is heavy-tailed.  

2.3 Statistical Models. 
Bayes's theorem is useful for robust statistical inference. It is useful to update current information to draw statistical 
inferences. The posterior probability value is computed through Baye’s theorem for the concordance correlation 
coefficient. The posterior probability of concordance correlation is calculated by 

        (6) 

The term is the likelihood function of concordance correlation. The value of 
 is obtained from prior literature. The value of P (data) gives the cumulative 

measurements of all possible values of concordance observations.  The posterior probability is obtained through 

(7) 

The posterior probability is proportional to the likelihood and prior probability. 

Let the variable of interest are and . The sample mean and standard deviation of  and are given as 

,    ,  ,  

and 

 

The sample Pearson correlation coefficient is 

                         (8) 

The sample concordance correlations 

          (9) 

The posterior density value of the Concordance correlation is defined as 

                                (10) 

Here,  is the sample correlation coefficient. Now, the, CCC and sample coefficient are replaced as ,
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. The mean and variance of X and Y are  and  respectively. The mean ( ) is derived from 

 . Now,  is assumed to follow Normal distribution with mean  and variance ( ) [17,18]. 

The hyperbolic tangent transformation is used to allow the conjugate prior of normal to build a posterior distribution of 
the correlation coefficient.  

There are different ways to define the prior but the handy one is 

(11) 

The prior value of m should be supported based on prior information. However, the detailed about selection of m can be 

referred to from [19] and [20].  
The sample values of  is defined as and . The value of  is obtained from the support of prior 
information and    from the study data itself. Further, the likelihood function to the posterior estimates of 
CCC ( ) is defined a 

X    (12) 
where the term is used to define the sample size. 

Further, the sample value of  in the above equation is obtained as 

         (13) 

The sample CCC is called as      (14) 

Further, the likelihood function to the posterior estimates of CCC  is defined as 

 

    (15) 

The posterior interval is obtained by  

(        (16) 

The 95% posterior interval of CCC can be defined as  

as ( , ) 

3. Application 
3.1 Data Description 
Data has been taken from the clinical trial of therapeutic drug development for the Liver Cirrhosis patients (from path 
http://www4.stat.ncsu.edu/~boos/var.select/pbc.html). 

Following cell transplantation, patients were expected to attend follow-up appointments twice a week for the first week, 
once a week for the next eight weeks, once every four weeks for the next 24 weeks, and once every three months for the 
next two years. Following the Week 24 Visit, assessments of trough plasma tacrolimus levels and routine clinical 
laboratory testing (haematology, blood chemistry, and urinalysis) were also carried out once a month in between visits 
(planned every three months). More details about data can be cited with [21].   

3.2 Computation of Bayesian Concordance Correlation Coefficient 
The agreement between serum bilirubin and albumin has been measured to explore posterior estimates of CCC in a total 
of 172 patients. The preliminary exploratory data was tested and normality assumptions were found to be followed for 
those selected subjects. The generated information between serum bilirubin and albumin is used as prior information of 
a sample size of 418 individuals in the Primary Biliary Cirrhosis (PBC) study [22].  

The computed value of  is observed with 0.70 and a calculated value of  is 0.63.Further, the computed 

value of is obtained as 0.001.  
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   (17) 

    (18) 

 =0.49866                (19) 
The 95% posterior interval is  is [0.43, 0.56]. 

4. Result &Discussion 
The baseline and demographic details of patients with liver cirrhosis in the treatment and control groups are shown in 
Table 1. Patients with liver cirrhosis in the therapy group had an average age of 48.6 years with a standard deviation 
(SD) of 9.38, whereas those in the control group had an average age of 49.85 years with an SD of 11.06. There are 10 
(or 12.051%) males and 73 (or 87.958.0%) females in the treatment group of people. Comparably, in the control group, 
the distribution of males and females is 70 (76.09%) and 22 (23.91%), respectively. The male patients are more in 
the control group as compared to the treated group. Patients with liver cirrhosis in the therapy group had an average 
height of 164.89 with SD 4.46, while those in the control group had an average height of 165.38 with SD 5.84. Patients 
with liver cirrhosis in the therapy group had an average weight of 65.71 with SD 5.24, while those in the control group 
had an average weight of 69.51 with SD 8.87. Patients with liver cirrhosis in the therapy group had an average 
Respiratory Rate (RR) of 25.99 with an SD of 16.59, while patients in the control group had an average RR of 21.43 
with an SD of 1.62. Patients with liver cirrhosis in the therapy group had a mean heart rate (HR) of 72.89 with 
a standard deviation of 15.61, while the mean HR in the control group was 77.22 with a standard deviation of 2.08.  

Table 2 describes the posterior estimate of CCC along with a 95% credible interval.  

The assessment of the relation between two variables plays a crucial role in setting decisions about medical diagnostics 
tools. The widely explored tools to explore the relationship between two continuous variables are the Pearson and 
Spearman correlation coefficients. However, the Pearson correlation coefficient is not useful for multivariate data 
analysis. Distance correlation which is a measure of statistical dependence between two random variables and not 
necessarily of equal dimension, is another choice for this gap. Bayesian techniques to compute the Distance correlation 
are also elaborated in [18]. Measurements of one variable can be waived off by consideration of another variable if the 
concordance correlation between them is highly positive.  

This work explores the potential of the Bayesian approach for calculating CCC. Compared to the frequentist approach, 
Bayesian methods offer greater flexibility and can incorporate prior knowledge, leading to more realistic results. The 
authors demonstrate this by estimating the CCC between serum bilirubin and albumin in liver cirrhosis patients using a 
Bayesian framework. 

The development of the robust extension of the concordance correlation coefficient is discussed by [6].  The 
generalized form of the concordance correlation coefficient is a useful and unified approach for agreement measurement. 
It is more appropriate for categorical and continuous data analysis. However, it is not as appropriate for ordinal 
measurements. Also, [6] has proposed a general index, the generalized concordance correlation coefficient, for 
evaluating agreement for continuous and categorical data.  [6] also introduced a stratified concordance correlation 
coefficient that adjusts for categorical covariates in the marginal mean and an extended concordance correlation 
coefficient that measures agreement among more than two responses. 

5. Conclusion 
The application of Bayesian computation of the Concordance Correlation Coefficient is described by the agreement of 
measurement between two continuous random variables. This application is an effort on Biochemical markers to get 
prominent evidence about test statistics on a relation between variables. The concordance correlation coefficient may 
seem to be convenient to have a single measure of agreement, but it is very inconvenient when a low is obtained in a 
study. One is unsure whether the evident disagreement is due to the homogeneity of the sample, the systematic bias 
between methods, or great random error between methods. The solutions of the latter two causes of disagreement are 
very different in nature; after obtaining a low, a researcher would not know whether the measurement tool needs to 
correct systematic bias or is inherently associated with large random errors. Regardless of the above drawback, CCC 
has attractive characteristics. It is simple to use. For bivariate normal data, their asymptotic normality and consistency 
are guaranteed by utilizing the sample counterparts. However, the inverse hyperbolic tangent transformation 
(Z-transformation) could be used to enhance its statistical features (consistency and asymptotic normality) [6]. Even 
with tiny sample sizes, it also holds up well against samples from the Poisson and uniform distributions. The further 
studies should be done to explore the CCC approach in more than two raters. 
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Appendix of tables 

Table 1. Descriptive statistics about baseline observations of the patients 

Parameters  Treatment group 

Mean (SD)  

Control Group 

Mean (SD) 

Age 48.60(9.38) 49.85(11.06) 

Gender       Male 

Female 

10 (12.1%) 

73 (88.0%) 

70 (76.1%) 

22 (23.9%) 

Height 164.89(4.46) 165.38(5.84) 

Weight 65.71(5.24) 69.51(8.78) 

Respiratory rate (RR) 25.99(16.59) 21.43(1.62) 

Heart Rate 72.89(15.61) 77.22(2.08) 

 
Table 2. Summary Parameters estimate for CCC 

Parameters Estimates 

 0.70 

 0.63 

 0.001 

 0.49866 

95% posterior interval [0.43, 0.56] 
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Prevalence and Risk Factors of Low Birth Weight Among Adolescent 
Mothers in Assam 

 

Abstract 
Low birth weight (LBW), is a newborn baby weighing less than 2.5 kilograms and it is defined by the World Health 
Organization (WHO). Birth weight is an important indicator when assessing a child’s health for early childhood 
morbidity and mortality exposure. This study aimed to identify the prevalence of low birth weight & its risk factors 
among the adolescent age group of mothers in Assam. The fourth round of the National Family Health Survey data 
(NHFS-4; 2015-2016) was used. Univariate and Multivariable logistic regression models were applied to identify the 
risk factors. For those mothers with a primary level of education, the prevalence of LBW was reported at 24.5 %, for 
poorest mothers at 21.4%, fourth & above birth order at 23.5%, and among anemic mothers at 17.2%. The prevalence of 
LBW was wide-ranging across the districts, it was highest in Kamrup and Dhubari and lowest in Sonitpur and Karbi 
Anglong districts. Education, wealth index, higher level of birth order, and method of reporting were risk factors for low 
birth weight in Assam. 

Keywords: LBW, Adolescent, District, Prevalence, Assam. 

1. Introduction 
Low birth weight (LBW), of a baby, is a weight less than 2.5 kilograms according to the World Health Organization 
(WHO). Low birth weight continues to be a significant public health problem globally and is associated with a range of 
both short and long-term consequences. ‘Low birth weight (LBW)’ is an important health indicator for infants. LBW 
babies indicated a high incidence in a rural setup and an equal proportion of prematurity as a cause of LBW. In the 
Rural area of Assam, LBW babies, are identified among illiterate teenage mothers, anemic mothers, short 
inter-pregnancy intervals, and nutrition during pregnancy and it is an essential fact for a healthy mother and a healthy 
baby. Short inter-pregnancy intervals were the important risk factors for LBW [1]. Lack of true measurement of birth 
weight is a major problem of underestimating the prevalence of LBW [2]. 
LBW infants suffer more incidences of common childhood diseases and the curse of illness is more prolonged and 
serious. The incidence of morbidities was higher among LBW babies compared to normal birth weight (NBW) babies 
[3]. Low birth weight occurred due to poor socioeconomic development, maternal nutrition, and non-utilization of 
health services during pregnancy. LBW occurred due to poor awareness about the existing maternal services at the basic 
level of the community [4]. Digit preference is one of the measure causes of underreporting of LBW and due to this 
reason actual prevalence of LBW was influenced [5].  

The prevalence of low birth weight is high among those women who were underweight, anemic, and never visited for 
any ANC checkup and maternal nutritional factors are more persistent across India. In India, higher parity and birth 
order is a common issue of the lower reporting of birth weight particularly in the northern, central, and eastern regions 
of India [6,7]. Keeping in the view literature review, there were no specific LBW research studies reported on the 
adolescent age group in Assam. Therefore, the authors aimed to identify the prevalence of low birth weight & its risk 
factors among the adolescent age group in Assam state of India. 

2. Materials and Methods 
The fourth round of the National Family Health Survey (NFHS-4) data was considered for the analysis and it was 
collected during 2015-2016. It is freely available at public forums for research. For the fulfillment of the objective, data 
was analyzed for the adolescent age group (15-24) for Assam states of India. The primary sample units (PSUs) were 
selected from the sampling frame which was created from the 2011 census. PSUs were ‘villages’ in rural areas and 
‘Census Enumeration Blocks (CEBs)’ in urban areas. PSUs with ‘fewer than 40 households’ were linked to the nearest 
PSU. Within each rural stratum, villages were selected from the sampling frame with probability proportionate to size 
(PPS). The final sample PSUs and CEBs were selected with PPS sampling. In every selected rural and urban PSU, a 
complete household mapping and listing operation was conducted before the main survey [7]. 
2.1 Dependent Variables 
Birth weight was considered as an outcome variable. It was categorized dichotomously [Low birth weight (LBW) and 
normal birth weight (NBW)] for analysis purposes. 

2.2 Independent Variables 
In this study number of predictor variables were considered; place of residence (rural/urban); Educational level (No 
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education, Primary, Secondary, Higher); Wealth index (Poorest, Poorer, Middle, Richer, and Richest); Birth order (First 
order, Second order, Third order and Fourth & above order); Anemic mother (Anemic and Not-anemic); Method of 
reporting (From written card and mother's recall). 

2.3 Statistical Analysis 
Descriptive statistics (frequency and proportion), Bivariate logistic regression (unadjusted odds ratio, p-value, and 
confidence interval), and multivariable logistic regression model (adjusted odds ratio, p-value, and confidence interval) 
were used to find the prevalence and the risk factors for the occurrence of LBW.  

3. Results and Discussion 
In India, the prevalence of low birth weight among the adolescent age group of mothers was reported at 19.7% and 
among the reproductive age group (15-49) was reported at 18.2%. The prevalence of LBW among the adolescent age 
group was higher than the reproductive age group (15-49). Similarly, in Assam, the prevalence of LBW among the 
adolescent age group (17.2%) was higher than in the reproductive age group (15.8%) [Table 1]. In urban places, the 
prevalence of LBW was 18.1%, and in rural was 17.1%. Among the primary level of education, LBW was reported at 
24.5 %, which was higher than other categories of education. The poorest level of the mother wealth index was reported 
at 21.4%, which was higher than the remaining category of the wealth index. Fourth & above birth order was reported 
23.5% than first, second, and third birth order. LBW among the anemic mothers was 17.2%. Birth weight reported 
through mothers’ memory recall among them LBW was 18.6%, which was higher than written health card (16.7%). 
Similar studies were reported about maternal nutritional factors and reporting of birth weight and important risk factors 
of LBW in India [8,9]. 

LBW is associated with high infant mortality, particularly within the first month of life. Birth weight is an important 
measure for determining the neonatal and infant’s survival. Over the decades, several intervention programs including 
Reproductive and Child Health have been launched all over India to improve the health status of mothers and children 
[10,11]. 

In Assam, the state government is involved in achieving the target of the national health mission (NHM) and sustainable 
development goal (SDG-3) for improving maternal and child health goals. There were various health programs like; 
Janani shishu suraksha karyakram (JSSK) and Janani shishu yojana (JSY). In each district of Assam, low birth weight 
was reported in Table 2. The highest prevalence of low birth weight was reported (32.5%) in Kamrup district, and 
Dhubri district (24.8%), and the lowest was reported (7.8%) in Sonitpur, and KarbiAnglong districts (8%). Similarly, 
hospital-based selected studies reported [5,12].  

The univariate and multivariable logistic regression model was developed to identify the risk factors of LBW in Assam. 
Unadjusted logistic regression model; When mothers were educated at primary level among them 1.54 times (OR: 1.54, 
95% CI: 0.99-2.37, p < 0.05) more likely to have low birth weight than uneducated. The poorest group of mothers was 
more likely to have low birth weight than another category of the wealth index. Fourth and above level of birth orders 
were 1.56 times more likely to have low birth weight than first birth order. Birth weight reported through mothers’ 
memory recall (birth size) was 1.14 times more likely to have low birth weight than reported through health cards 
(written cards). Adjusted logistics regression model; controlling the other factors, those who were residing in rural 
places were 0.22 times less likely to have low birth weight than those residing in urban places. When mothers were 
educated at the primary level, they were 1.59 times (OR: 1.59, 95% CI: 1.02-2.48) more likely to have low birth weight 
than uneducated [Table 3].  

This study was carried out in Assam and its district to understand the prevalence and risk factors of LBW among the 
adolescent age group of the mothers. The authors utilized the Assam state representative cross-sectional secondary data 
to determine the objective. There were similar studies reported to find the clinical and nonclinical risk factors of low 
birth weight and its risk factors in Assam state. Almost all research has been completed in the state which is focused on 
hospital-based data but this is the cross-sectional survey-based secondary data [5,13,14]. Here, similar risk factors of 
low birth weight were reported [15,16,17] 

4. Limitation of Study 
Proper antenatal care plays an important role in the healthy outcome of the pregnancy. Since this is the cross-sectional 
survey-based data for India, states, and districts, retrospective birth history information is used. This data was analyzed 
with selected indicators for only the adolescent age group of the mothers. The large number of information available in 
this data set is open for further studies. This study focuses only on the Assam state in India. 
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Table 1 shows the prevalence of Low birth weight among the adolescent age group (15-24) through different 
background characteristics, State of Assam. 

 

 Predictors LBW NBW Total  
Place of Residence       

Urban 29 (18.1) 131 (81.9) 160 

Rural 273 (17.1) 1320 (82.9) 1593 

Total 302 (17.2) 1451 (82.8) 1753 

Educational level       

No education 43 (17.6) 202 (82.4) 245 

Primary 65 (24.5) 200 (75.5) 265 

Secondary 189(15.7) 1012 (84.3) 1201 

Higher 5 (11.9) 37 (88.1) 42 

Total 302 (17.2) 1451 (82.8) 1753 

Wealth index       

Poorest 89 (21.4) 327 (78.6) 416 

Poorer 139 (17.0) 677 (83.0) 816 

Middle 54 (15.5) 294 (84.5) 348 

Richer 16 (11.0) 129 (89.0) 145 

Richest 4 (14.3) 24 (85.7) 28 

Total 302 (17.2) 1451 (82.8) 1753 

Birth order       

First order 227 (17.9) 1043 (82.1) 1270 

Second order 63 (15.9) 333 (84.1) 396 

Third order 7 (10.1) 62 (89.9) 69 

Fourth and above order 4 (23.5) 13 (76.5) 17 

Anemic mother       

Anemic 149 (17.2) 718 (82.8) 867 

Non-anemic 147 (17.3) 704 (82.7) 851 

Method of reporting       

From written card 204 (16.7) 1021 (83.3) 1225 

From mother's recall 98 (18.6) 430 (81.4) 528 

India age group (15-24) 14184 (19.7) 57869 (80.3) 72053 
India 35475 (18.2) 159343 (81.8) 194818 
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Table 2 shows the district-wise prevalence of low birth weight among adolescents age group (15-24), state of Assam. 

 

District Low Birth Weight 
N (%) 

Normal Birth 
Weight N (%) 

Total 

Kokrajhar 7 (14.6) 41 (85.4) 48 

Dhubri 30 (24.8) 91 (75.2) 121 

Goalpara 10 (13.9) 62 (86.1) 72 

Barpeta 22 (20.0) 88 (80.0) 110 

Morigaon 12 (16.0) 63 (84.0) 75 

Nagaon 29 (17.4) 138 (82.6) 167 

Sonitpur 6 (7.8) 71 (92.2) 77 

Lakhimpur 10 (18.5) 44 (81.5) 54 

Dhemaji 8 (15.4) 44 (84.6) 52 

Tinsukia 18 (21.40 66 (78.6) 84 

Dibrugarh 16 (20.5) 62 (79.5) 78 

Sivasagar 10 (17.5) 47 (82.5) 57 

Jorhat 8 (10.1) 71 (89.9) 79 

Golaghat 8 (12.1) 58 (87.9) 66 

KarbiAnglong 2 (8.0) 23 (92.0) 25 

Dima Hasao 1 (12.5) 7 (87.5) 8 

Cachar 14 (16.5) 71 (83.5) 85 

Karimganj 10 (14.3) 60 (85.7) 70 

Hailakandi 5 (13.5) 32 (86.5) 37 

Bongaigaon 7 (15.2) 39 (84.8) 46 

Chirang 3 (15.0) 17 (85.0) 20 

Kamrup 27 (32.5) 56 (67.5) 83 

Kamrup 

Metropolitan 
6 (15.4) 33 (84.6) 39 

Nalbari 7 (20.6) 27 (79.4) 34 

Baksa 13 (20.0) 52 (80.0) 65 

Darrang 7 (11.1) 56 (88.9) 63 

Udalguri 5 (13.5) 32 (86.5) 37 

Assam 301 (17.2) 1451 (82.8) 1752 
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Table 3 shows the adjusted and unadjusted logistic regression model through different background characteristics for 
the adolescent age group (15-24), Assam. 

 

 Adjusted Unadjusted 

 Predictors   95% C. I.    
95% C. I.  

  
Place  OR Lower Upper OR Lower Upper 

Urban 1.00  -  - 1.00  -  -  

Rural 0.78 0.49 1.25 1.06 0.69 1.62 

Education             

No education 1.00 -  -   1.00 -  -  

Primary 1.59 1.02 2.48 1.54* 0.99 2.37 

Secondary 0.97 0.66 1.44 0.88 0.61 1.27 

Higher 0.74 0.26 2.15 0.59 0.21 1.63 

Wealth index             

Poorest 1.00  - -  1.00  -   - 

Poorer 0.78 0.57 1.07 0.75** 0.56 1.01 

Middle 0.68 0.45 1.02 0.67* 0.46 0.97 

Richer 0.45 0.24 0.86 0.45* 0.26 0.79 

Richest 0.64 0.21 1.94 0.64 0.22 1.85 

Birth order             

First order 1.00  - -  1.00  -  -  

Second order 0.75 0.55 1.03 0.87 0.64 1.18 

Third order 0.43 0.19 0.94 0.56 0.26 1.20 

Fourth and 

above order 
1.19 0.39 3.61 1.56 0.53 4.64 

Anemic mother             

Anemic 1.00  - -  1.00  -   - 

Non-anemic 1.01 0.78 1.30 1.00 0.78 1.29 

Method of 
reporting 

            

From written 

card 
1.00 -   - 1.00   - -  

From mother's 

recall 
1.18 0.89 1.54 1.14 .87 1.48 

 
5. Conclusion 
The proportion of low birth weight among the adolescent age group of mothers was 17.2% in Assam. Which is lower 
than the national level. Primary education, poorest wealth index, fourth and above birth order, and mother memory recall 
(birth size) were identified as higher risk factors for low birth weight. Currently, a total of 35 districts in Assam but in this 
study 27 district prevalence of low birth weight reported. The maximum proportion of LBW was 32.5% in Kamrup and 
Dhubari (24.8%) districts. The minimum proportion of LBW was 7.8% in Sonitpur and Karbi Anglong (8.0%) districts. 
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